• Title/Summary/Keyword: two-metal ion mechanism

Search Result 27, Processing Time 0.023 seconds

Physiological responses of Fucus serratus (Phaeophyceae) to high doses of cadmium exposure

  • Lee, Soon-Jeong;Cho, Mi-Young;Han, Hyun-Ja;Jee, Bo-Young;Kim, Jin-Woo
    • Journal of fish pathology
    • /
    • v.24 no.2
    • /
    • pp.141-152
    • /
    • 2011
  • Growth, oxidative stress and antioxidant capacity of Fucus serratus exposed to high doses of Cd were examined. Two sites in Southwest England (Restronguet Point and Bantham Quay) were selected since they had different histories of metal contamination. 1~10 mg Cd $L^{-1}$ were treated to Aquil medium for up to 14 days. Similar levels of lipid peroxidation but different values of relative growth rates, cupric ion reducing antioxidant capacity (CUPRAC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging capacity indicated that F. serratus has population-dependent antioxidant strategies. F. serratus demonstrated cadmium resistance with no visual symptoms for 14 days and the population from the polluted area seemed to have more powerful antioxidant strategies. However Fucus from the conserved area also showed protective anti oxidative mechanism.

Investigation of defects and surface polarity in AlN and GaN using wet chemical etching technique (화학적 습식 에칭을 통한 AlN와 GaN의 결함 및 표면 특성 분석)

  • Hong, Yoon Pyo;Park, Jae Hwa;Park, Cheol Woo;Kim, Hyun Mi;Oh, Dong Keun;Choi, Bong Geun;Lee, Seong Kuk;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.5
    • /
    • pp.196-201
    • /
    • 2014
  • We investigated defects and surface polarity in AlN and GaN by using wet chemical etching. Therefore, the effectiveness and reliability of estimating the single crystals by defect selective etching in NaOH/KOH eutectic alloy have been successfully demonstrated. High-quality AlN and GaN single crystals were etched in molten NaOH/KOH eutectic alloy. The etching characteristics and surface morphologies were carried out by scanning electron microscope (SEM) and atomic force microscope (AFM). The etch rates of AlN and GaN surface were calculated by etching depth as a function of etching time. As a result, two-types of etch pits with different sizes were revealed on AlN and GaN surface, respectively. Etching produced hexagonal pits on the metal-face (Al, Ga) (0001) plane, while hexagonal hillocks formed on the N-face. On etching rate calibration, it was found that N-face had approximately 109 and 15 times higher etch rate than the metal-face of AlN and GaN, respectively. The size of etch pits increased with an increase of the etching time and they tend to merge together with a neighbouring etch pits. Also, the chemical mechanism of each etching process was discussed. It was found that hydroxide ion ($OH^-$) and the dangling bond of nitrogen play an important role in the selective etching of the metal-face and N-face.

Purification and Properties of Glucose 6-Phosphate Dehydrogenase from Aspergillus aculeatus

  • Ibraheem, Omodele;Adewale, Isaac Olusanjo;Afolayan, Adeyinka
    • BMB Reports
    • /
    • v.38 no.5
    • /
    • pp.584-590
    • /
    • 2005
  • Glucose 6-phosphate dehydrogenase (EC 1.1.1.49) was purified from Aspergillus aculeatus, a filamentous fungus previously isolated from infected tongue of a patient. The enzyme, apparently homogeneous, had a specific activity of $220\;units\;mg^{-1}$/, a molecular weight of $105,000{\pm}5,000$ Dal by gel filtration and subunit size of $52,000{\pm}1,100$ Dal by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. The substrate specificity was extremely strict, with glucose 6-phosphate (G6P) being oxidized by nicotinamide adenine dinucleotide phosphate (NADP) only. At assay pH of 7.5, the enzyme had $K_m$ values of $6\;{\mu}m$ and $75\;{\mu}m$ for NADP and G6P respectively. The $k_{cat}$ was $83\;s^{-1}$. Steady-state kinetics at pH 7.5 produced converging linear Lineweaver-Burk plots as expected for ternary-complex mechanism. The patterns of product and dead-end inhibition suggested that the enzyme can bind NADP and G6P separately to form a binary complex, indicating a random-order mechanism. The enzyme was irreversibly inactivated by heat in a linear fashion, with G6P providing a degree of protection. Phosphoenolpyruvate (PEP), adenosinetriphosphate (ATP), and fructose 6-phosphate (F6P), in decreasing order, are effective inhibitors. Zinc and Cobalt ions were effective inhibitors although cobalt ion was more potent; the two divalent metals were competitive inhibitors with respect to G6P, with $K_i$ values of $6.6\;{\mu}m$ and $4.7\;{\mu}m$ respectively. It is proposed that inhibition by divalent metal ions, at low NADPH /NADP ratio, is another means of controlling pentosephosphate pathway.

The Successive Complex Formation of Trivalent Lanthanide Ions with Ionophore ETH4120 at the Liquid/Liquid Interface (액체/액체계면에서 삼가 란탄족원소 이온과 중성담체(ETH4120)의 연속적인 착물형성 연구)

  • Choi, In Kyu;Yu, Zemu;Yeon, Jei Won;Chun, Kwan Sik;Kim, Won Ho;Eom, Tae Yoon
    • Journal of the Korean Chemical Society
    • /
    • v.43 no.2
    • /
    • pp.161-166
    • /
    • 1999
  • Transfer of lanthanide ions across the liquid/liquid interface facilitated by ionopore ETH4120 has been studied by using cyclic voltammetry (CV) and chronopotentiometry with cyclic linear current-scanning (CPCLCS) under the condition where the concentration of ETH4120 in nitrobenzene was much smaller than the concentration of lanthanide ions in aqueous solution. One cathodic current peak (transfer from aqueous to nitrobenzene phase) and two anodic current waves (transfer from nitrobenzene to aqueous phase) were observed. The cathodic wave was due to the formation of 1:1 (metal:ligand) complex and two anodic waves showed successive formation of 1:2 and 1:3 complexes in nitrobenzene solution. But there was no cathodic wave corresponding to two anodic waves. The ion transfer mechanism has also been discussed.

  • PDF

Effect of Color Development of Willemite Crystalline Glaze by Adding NiO (Willemite 결정유에 NiO 첨가가 발색에 미치는 영향)

  • Lee, Chi-Youn;Lee, Byung-Ha
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.598-602
    • /
    • 2010
  • When metal oxides are added into crystalline glaze, colors of glaze and crystals are similar as colorants generally. But the case of NiO in zinc crystalline glaze is different from general color development. When NiO is added to zinc crystalline glaze it can develop two or three colors. The active use of color development mechanism by adding NiO to the zinc crystalline glaze to control color of the base glaze and crystal with stability is investigated. This report is expected to contribute to the ceramic industry in improving application of zinc crystalline glaze. For the experiment of NiO, the quantity of NiO additives is changed to the base glaze for the most adequate formation of willemite crystal from previous research and firing condition: temperature increasing speed $5^{\circ}C/min$, holding 1 h at $1270^{\circ}C$, annealing speed $3^{\circ}C/min$ till $1170^{\circ}C$, holding 2 h at $1170^{\circ}C$ then naturally annealed. The samples are characterized by X-ray diffraction (XRD), UV-vis, and Micro-Raman. The result of the procedure as follows; Ni substitutes for Zn ion then glaze develops blue willemite crystals, as if cobalt is used, on brown glaze base. When NiO quantity is increased to over 5 wt%, willemite size is decreased, and the density of the crystal is increased, at the same time $Ni_2SiO_4$ (olivine) phase, the second phase, has been developed. The excessive NiO is reacted with silicate in the glass then developed green $Ni_2SiO_4$ (olivine), and quantity of $Ni_2SiO_4$ (olivine) is increased as quantity of willemite is decreased. It is proved to create three colors, blue, brown and green by controlling the quantity of NiO to the zinc crystalline glaze and it will improve the multiple use of colors to the ceramic design.

Nucleophilic Displacement at Sulfur Center (I). Halogen Exchange in Benzenesulfonyl Chlorides (유황의 친핵치환반응 (제1보) 염화 벤젠슬포닐의 할로겐 교환반응)

  • Jae Eui Lee;Ik Choon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.3
    • /
    • pp.154-162
    • /
    • 1973
  • The rates and activation parameters for the halide $(Cl^{-}, Br^{-}, I^{-})$TeX> exchange reactions of substituted benzenesulfonyl-chloride, $XC_6H_4SO_2Cl$(X:p-MeO, H, p-Cl, p-Br, p-NO$_2l$) in dry acetone at two temperatures have been determined. It was found that the ion-pair of metal halide,$M^{+}X^{-}$, have negligible reactivity compared to free halide ions. It was also found that the nucleophilic order is $Cl^{-}>Br^{-}>I^{-}$for electron-donating substituent, and $Cl^{-}>I^{-}>Br^{-}$ for electron-withdrawing substituents. These results and convex nature of the Hammett plot are interpreted in the light of simple $S_N2$mechanism with the bond breaking becoming important for compounds with the electron withdra-wing substituents.

  • PDF

Corrosion Characteristics of Excavated Bronze Artifacts According to Corrosion Environment (부식 환경에 따른 출토 청동 유물의 부식 특성)

  • Jang, Junhyuk;Bae, Gowoon;Chung, Kwangyong
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.1
    • /
    • pp.24-33
    • /
    • 2020
  • In excavated bronze artifacts, corrosion products of various shapes and colors are observed due to multiple corrosion factors coexisting in the burial environment, and these corrosion products can constitute important data not only in terms of long-term corrosion-related information, but also in connection with preservation of artifacts. As such, scientific analysis is being carried out on the corrosion layer and corrosion products of bronze artifacts, and the corrosion mechanism and the characteristics of corrosion products elucidated, which is essential for interpreting the exposed burial environment and its association with corrosion factors inside the burial environment. In this study, after classifying excavated bronze artifacts according to alloy ratio and fabrication technique, comprehensive analysis of the surface of corrosion artifacts, corrosion layer, and corrosion products was carried out to investigate the corrosion mechanism, formation process of the corrosion layer, and characteristics of corrosion products. The study designated two groups according to alloy ratio and fabrication technique. In Group 1, which involved a Cu-Sn-Pb alloy and had no heat treatment, the surface was rough and external corrosion layers were formed on a part, or both sides, of the inside and the outside, and the surface was observed as being green or blue. α+δ phase selection corrosion was found in the metal and some were found to be concentrated in an empty space with a purity of 95 percent or more after α+δ phase corrosion. The Cu-Sn alloy and heat-treated Group 2 formed a smooth surface with no external corrosion layer, and a dark yellow surface was observed. In addition, no external corrosion layer was observed, unlike Group 1, and α corrosion was found inside the metal. In conclusion, it can be seen that the bronze artifacts excavated from the same site differ in various aspects, including the formation of the corrosion layer, the shape and color of the corrosion products, and the metal ion migration path, depending on the alloy ratio and fabrication technique. They also exhibited different corrosion characteristics in the same material, which means that different forms of corrosion can occur depending on the exposure environment in the burial setting. Therefore, even bronze artifacts excavated from the same site will have different corrosion characteristics depending on alloy ratio, fabrication technique, and exposure environment. The study shows one aspect of corrosion characteristics in specific areas and objects; further study of corrosion mechanisms in accordance with burial conditions will be required through analysis of the corrosive layer and corrosive product characteristics of bronze artifacts from various regions.