The Successive Complex Formation of Trivalent Lanthanide Ions with Ionophore ETH4120 at the Liquid/Liquid Interface

액체/액체계면에서 삼가 란탄족원소 이온과 중성담체(ETH4120)의 연속적인 착물형성 연구

  • Choi, In Kyu (Nuclear Chemistry Lab, Korea Atomic Energy Research Institute) ;
  • Yu, Zemu (Chinese Academy of Sciences, Changchun Institute of Applied Chemistry) ;
  • Yeon, Jei Won (Nuclear Chemistry Lab, Korea Atomic Energy Research Institute) ;
  • Chun, Kwan Sik (Nuclear Chemistry Lab, Korea Atomic Energy Research Institute) ;
  • Kim, Won Ho (Nuclear Chemistry Lab, Korea Atomic Energy Research Institute) ;
  • Eom, Tae Yoon (Nuclear Chemistry Lab, Korea Atomic Energy Research Institute)
  • Published : 19990400

Abstract

Transfer of lanthanide ions across the liquid/liquid interface facilitated by ionopore ETH4120 has been studied by using cyclic voltammetry (CV) and chronopotentiometry with cyclic linear current-scanning (CPCLCS) under the condition where the concentration of ETH4120 in nitrobenzene was much smaller than the concentration of lanthanide ions in aqueous solution. One cathodic current peak (transfer from aqueous to nitrobenzene phase) and two anodic current waves (transfer from nitrobenzene to aqueous phase) were observed. The cathodic wave was due to the formation of 1:1 (metal:ligand) complex and two anodic waves showed successive formation of 1:2 and 1:3 complexes in nitrobenzene solution. But there was no cathodic wave corresponding to two anodic waves. The ion transfer mechanism has also been discussed.

Ionophore ETH4120의 이온담체작용에 의한 란탄족원소이온의 액체/액체계면에서의 상전이를 순환전압전류법(cyclic voltammetry)과 순환전류주사 대시간전위차법(Chronopotentiometry with cyclic linear current scanning; CPCLCS)으로 고찰하였다. 수용액 중의 란탄족원소이온농도가 유기용액중의 착화제 농도보다 훨씬 높을 때 순환전압전류법과 CPCLCS 곡선에서 하나의 양극전류(수용액상에서 유기상으로 전이)파와 두개의 음극전류(유기상에서 수용액상으로 전이)파가 관찰되었다. 양극전류파는 1:1(금속:착화제) 착물형성과 관계되는 봉우리이고, 두 음극전류파는 각각 1:2와 1:3의 연속적인 착물형성과 관계된 파이다. 그러나 1:1 착물의 양극전류파와 대응하는 1:1 착물의 음극파와, 1:2 착물과 1:3 착물의 음극전류파에 대응되는 양극전류파는 나타나지 않았다. 이와 관련되는 이온 상전이 메카니즘을 검토하였다.

Keywords

References

  1. J. Electroanal. Chem. v.234 Koryta, J.;Kozlove, Y. N.;Skalicky, M.
  2. J. Electroanal. Chem. v.148 Vanysek, P.;Ruth, W.;Koryta, J.
  3. J. Electroanal. Chem. v.204 Sabela, A.;Koryta, J.;Valent, O.
  4. J. Electroanal. Chem. v.135 Hofmamova, A.;Hung, L. Q.;Khalil, W.
  5. Anal. Chem. v.52 Homalka, D.;Hung, L. Q.;Hofmanova, A.;Khalil, M. W.;Koryta, T.;Marecek, V.;Samec, Z.;Sen, S. K.;Vanysek, P.;Weber, J.;Brezina, M.;Janda, M.;Stibor, I.
  6. J. Electroanal. Chem. v.159 Du, G.;Koryta, J.;Ruth, W.;Vanysek, P.
  7. Selective Electrode Rev. v.13 Koryta, J.
  8. J. Electroanal. Chem. v.125 Homolka, D.;Marecek, V.;Samec, Z.;Ryba, O.;Petranek, J.
  9. Anal. Chem. v.62 Samec, Z.;Papoff, P.
  10. Anal. Chem. v.59 Sinru, L.;Freiser, H.
  11. J. Electroanal. Chem. v.345 Kakiuchi, T.
  12. Anal. Chim. Acta v.233 Gehrig, P;Rusterhalz, B.;Simon, W.
  13. Ion-Selective Electrode Rev. v.5 Koryta, J.
  14. J. Electroanal. Chem. v.189 Wang, E.;Pang, Z.
  15. J. Electronal. Chem. v.300 Kakiuchi, T.;Senda, M.
  16. J. Electroanal. Chem. v.277 Liu, T.;Wang, E.
  17. Analytical Sciences v.9 Wang, E.;Yu, Z.;Xu, C.;Qi, D.
  18. J. Electroanal. Chem. v.279 Baruzzi, A. M.;Wendt, H.
  19. J. Electroanal. Chem. v.318 Shao, Y.;Osborne, M. D.;Girault, H. H.