Nucleophilic Displacement at Sulfur Center (I). Halogen Exchange in Benzenesulfonyl Chlorides

유황의 친핵치환반응 (제1보) 염화 벤젠슬포닐의 할로겐 교환반응

  • Jae Eui Lee (Department of Applied Chemistry, College of Engineering, Sepul National University, Department of Chemistry, College of Science, Inha University) ;
  • Ik Choon Lee (Department of Applied Chemistry, College of Engineering, Sepul National University, Department of Chemistry, College of Science, Inha University)
  • 이재의 (서울대학교 공과대학 응용화학과) ;
  • 이익춘 (서울대학교 공과대학 응용화학과)
  • Published : 1973.06.30

Abstract

The rates and activation parameters for the halide $(Cl^{-}, Br^{-}, I^{-})$TeX> exchange reactions of substituted benzenesulfonyl-chloride, $XC_6H_4SO_2Cl$(X:p-MeO, H, p-Cl, p-Br, p-NO$_2l$) in dry acetone at two temperatures have been determined. It was found that the ion-pair of metal halide,$M^{+}X^{-}$, have negligible reactivity compared to free halide ions. It was also found that the nucleophilic order is $Cl^{-}>Br^{-}>I^{-}$for electron-donating substituent, and $Cl^{-}>I^{-}>Br^{-}$ for electron-withdrawing substituents. These results and convex nature of the Hammett plot are interpreted in the light of simple $S_N2$mechanism with the bond breaking becoming important for compounds with the electron withdra-wing substituents.

치환된 염화벤젠술포닐 $XC_6H_4SO_2Cl$(X:p-MeO, H, p-Cl, p-Br, p-NO_2)의 할라이드 교환 반응을 무수 아세톤 중에서 행하여 반응속도 상수와 활성화 계수를 구하였다. 금속 할라이드의 이온쌍 $M^{+}X^{-}$의 반응성은 할라이드 이온에 비하여 무시할 수 있음을 보았다. EH 친핵성도가 전자를 밀어내는 치환기를 가진 경우에 $Cl>Br^{-}>I^{-}$이고, 전자를 끌어주는 치환기를 가진 경우에는 $Cl>I^{-}>Br^{-}$이었다. 이들 결과와 Hammett그림표가 위로 볼록한 것을 결합 약화 과정이 크게 기여하는 단순 $S_N2$메커니즘으로 설명하였다.

Keywords

References

  1. J.Chem. Soc. J.L.Gleeve;E.D. Hughes;C.K.Ingold
  2. Progress in Phy. Org. Chem. v.6 E.Ciuffarin;A.Fava
  3. Mechanisms of Sulfur Reactions W.A.Pryor
  4. J.Chem. Soc. C.A.Bunton;P.B.D.de la Mare;J.G. Titlet
  5. J. Amer. Chem. Soc. v.86 C.R.Johnson;J.McCants Jr.
  6. J.Amer. Chem. Soc. v.88 D.R.Rayner;E.G. Miller;P.Bickart;A.J. Cordon;K.Mislow
  7. J.Amer. Chem. soc. v.78 A.H.Fainberg;S.Winstein
  8. Austral.J.Chem. v.15 R.Foon;A.N.Hambly
  9. Canad. J. Chem. v.47 R.E.Robertson;B.Rossal;S.E. Sugamori;L.Treindl
  10. J.Chem.Soc. O.Rogne
  11. J.Amer.Chem.Soc. v.78 H.K.Hall, Jr.
  12. Austral. J. Chem. v.14 F.E.Jenkins;A.N.Hambly
  13. J.Amer.Chem.Soc. v.94 E.C.F.Ko;R.E.Robertson
  14. Austral.J.Chem. v.15 R.Foon;A.N.Hambly
  15. Austral. J. Chem. v.14 F.E.Jenkins;A.N.Hambly
  16. Methoden der Organische Chemie Eugen Mueller
  17. Thesis for Master degree at Seoul National University B.S.Lee
  18. J.Korean Chem. Soc. v.13 B.S.Lee;M.H.Whangbo;I.Lee
  19. J.Amer. Chem. Soc. v.91 R.A.Sneen;F.R.Rolle
  20. Amer. Chem. J. v.48 S.F. Acree
  21. Advanced Organic Chemistry L.Fieser;M.Fieser
  22. J.Korean Nucl. Soc. v.3 I.Lee;B.S.Lee;J.E.Yie
  23. J.Chem. Soc. (B) R.M.Laird;M.J.Spence
  24. J.C.S. Perkin II O.Rogne
  25. The 52th Conference of The Chemical Institute of Canada R.E.Robertson;B.Rossal
  26. J.C.S. Perkin II E.Ciuffarin;L.Senator;Mauro Isolar
  27. J.Amer. Chem. Soc. v.94 W.Sheppard;R.W.Taft
  28. Bull. Chem. Soc. Japan v.44 Junichi Hayami;Nobuo Tanaka;Syuji Kurabayashi;Yasuhiro Kooani;Aritsune Kaji
  29. J.Amer. Chem. Soc. v.85 R.G.Pearson
  30. J.Amer. Chem. Soc. v.89 R.G. Pearson;J.Songstad
  31. Science v.151 R.G.Pearson