• Title/Summary/Keyword: two parameter foundation

Search Result 153, Processing Time 0.028 seconds

Vibration Analysis of Thick Plates with Concentrated Mass on Elastic Foundation (탄성지지된 집중질량을 갖는 변단면 후판의 진동해석)

  • Kim, Il-Jung;Oh, Soog-Kyoung;Lee, Yong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.6 s.111
    • /
    • pp.609-618
    • /
    • 2006
  • This study is undertaken for the vibration analysis of tapered thick plate with concentrated mass on elastic foundation. The boundary condition of the plate is analyzed with the 4-sides simply supported and 4-fixed basis. This study find out the frequency following the change in size for each foundational variable on Pasternak foundation, one of the two-parameter elastic foundation parameter that considered the shear layer to the Winkler foundation parameter. The concentrated mass is applied with the consideration of mass of the entire plate, and the change of frequency is studies on each location with the consideration of reacting for the three locations for concentrated mass. And, in order to find out the change of frequency on the thickness of the plate, it considered tapered ratio that linearly changes depending on the length of the plate with the thickness of the plate in x-direction, and the tapered ratio has changes with 4 types ($\alpha$=0.25, 0, 5, 0.75, and 1.0). For the interpretation, the program using finite element method (F.E.M.) is used and the element coordination is used the 8-node serendipity element. Therefore, the purpose of this study is to find out the characteristics of plate vibration under the mechanica vibration or external vibration factor to facilitate as the basic data of the design to secure the stability.

Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell

  • Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.479-493
    • /
    • 2018
  • In this paper nonlocal free vibration analysis of a doubly curved piezoelectric nano shell is studied. First order shear deformation theory and nonlocal elasticity theory is employed to derive governing equations of motion based on Hamilton's principle. The doubly curved piezoelectric nano shell is resting on Pasternak's foundation. A parametric study is presented to investigate the influence of significant parameters such as nonlocal parameter, two radii of curvature, and ratio of radius to thickness on the fundamental frequency of doubly curved piezoelectric nano shell.

Combination resonances of imperfect SSFG cylindrical shells rested on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.87-100
    • /
    • 2020
  • The present paper investigates the combination resonance behavior of imperfect spiral stiffened functionally graded (SSFG) cylindrical shells with internal and external functionally graded stiffeners under two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation, which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness, to account for the vibration hardening/softening phenomena and damping considerations. With regard to classical plate theory of shells, von-Kármán equation and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The combination resonance is obtained by using the multiple scales method. Finally, the influences of the stiffeners angles, foundation type, the nonlinear elastic foundation coefficients, material distribution, and excitation amplitude on the system resonances are investigated comprehensively.

The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.711-726
    • /
    • 2017
  • In the present work, by considering the agglomeration effect of single-walled carbon nanotubes, free vibration characteristics of functionally graded (FG) nanocomposite sandwich plates resting on Pasternak foundation are presented. The volume fractions of randomly oriented agglomerated single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. To determine the effect of CNT agglomeration on the elastic properties of CNT-reinforced composites, a two-parameter micromechanical model of agglomeration is employed. In this research work, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented straight CNTs. The 2-D generalized differential quadrature method (GDQM) as an efficient and accurate numerical tool is used to discretize the equations of motion and to implement the various boundary conditions. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The benefit of using the considered power-law distribution is to illustrate and present useful results arising from symmetric and asymmetric profiles. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the laminated FG nanocomposite plates are investigated. It is shown that the natural frequencies of structure are seriously affected by the influence of CNTs agglomeration. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated plates.

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.671-689
    • /
    • 2018
  • Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.

Higher-order Shear Deformable Analysis of Laminated Plates on Two-parameter Elastic Foundations (Two-parameter 탄성지반위에 놓인 고차전단변형 적층판의 해석)

  • Han, Sung-Cheon;Jang, Suk-Yoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.101-113
    • /
    • 2001
  • The main purpose of this paper is to present deflections of laminated composite plates on the two-parameter foundations. that is an elastic foundation with shear layer. This paper focuses on the deformation behaviour of anisotropic structures on elastic foundations. The third-order shear deformation theory is applied by using the double-fourier series. To validate the derived equations the obtained displacements for simply supported isotropic and orthotropic plates on elastic foundations are compared with those of Timoshenko and LUSAS program. The results show an excellent agreement for the isotropic and LUSAS program. The results show an excellent agreement for the isotropic and orthotropic plates on the elastic foundations. Numerical results for displacements are presented to show the effects of side-to-thickness ratio aspect ratio, material anisotropy and shear modulus of foundations.

  • PDF

Dynamic analysis of higher order shear-deformable nanobeams resting on elastic foundation based on nonlocal strain gradient theory

  • Bensaid, Ismail;Bekhadda, Ahmed;Kerboua, Bachir
    • Advances in nano research
    • /
    • v.6 no.3
    • /
    • pp.279-298
    • /
    • 2018
  • Present investigation deals with the free vibration characteristics of nanoscale-beams resting on elastic Pasternak's foundation based on nonlocal strain-gradient theory and a higher order hyperbolic beam model which captures shear deformation effect without using any shear correction factor. The nanobeam is lying on two-parameters elastic foundation consist of lower spring layers as well as a shear layer. Nonlocal strain gradient theory takes into account two scale parameters for modeling the small size effects of nanostructures more accurately. Hamilton's principal is utilized to derive the governing equations of embedded strain gradient nanobeam and, after that, analytical solutions are provided for simply supported conditions to solve the governing equations. The obtained results are compared with those predicted by the previous articles available in literature. Finally, the impacts of nonlocal parameter, length scale parameter, slenderness ratio, elastic medium, on vibration frequencies of nanosize beams are all evaluated.

A mathematical model to recover missing monitoring data of foundation pit

  • Liu, Jiangang;Zhou, Dongdong;Liu, Kewen
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.275-286
    • /
    • 2015
  • A new method is presented to recover missing deformation data of lateral walls of foundation pit when the monitoring is interrupted; the method is called Dynamic Mathematical Model - Parameter Interpolation. The deformation of lateral walls of foundation pit is mainly affected by the type of supporting structure and the situation of constraints, therefore, this paper mainly studies the two different kinds of variation law of deep horizontal displacement when the lateral walls are constrained or not, proposes two dynamic curve models of normal distribution type and logarithmic type, deals with model parameters by interpolating and obtains the parameters of missing data, then missing monitoring data could be Figured out by these parameters. Compared with the result from the common average method which is used to recover missing data, in the upper 2/3 of the inclinometer tube, the result by using this method is closer to the actual monitoring data, in the lower 1/3 part of the inclinometer tube, the result from the common average method is closer to the actual monitoring data.

Novel quasi 3D theory for mechanical responses of FG-CNTs reinforced composite nanoplates

  • Alazwari, Mashhour A.;Daikh, Ahmed Amine;Eltaher, Mohamed A.
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.117-137
    • /
    • 2022
  • Effect of thickness stretching on free vibration, bending and buckling behavior of carbon nanotubes reinforced composite (CNTRC) laminated nanoplates rested on new variable elastic foundation is investigated in this paper using a developed four-unknown quasi-3D higher-order shear deformation theory (HSDT). The key feature of this theoretical formulation is that, in addition to considering the thickness stretching effect, the number of unknowns of the displacement field is reduced to four, and which is more than five in the other models. Two new forms of CNTs reinforcement distribution are proposed and analyzed based on cosine functions. By considering the higher-order nonlocal strain gradient theory, microstructure and length scale influences are included. Variational method is developed to derive the governing equation and Galerkin method is employed to derive an analytical solution of governing equilibrium equations. Two-dimensional variable Winkler elastic foundation is suggested in this study for the first time. A parametric study is executed to determine the impact of the reinforcement patterns, nonlocal parameter, length scale parameter, side-t-thickness ratio and aspect ratio, elastic foundation and various boundary conditions on bending, buckling and free vibration responses of the CNTRC plate.

Nonlinear dynamic analysis of spiral stiffened functionally graded cylindrical shells with damping and nonlinear elastic foundation under axial compression

  • Foroutan, Kamran;Shaterzadeh, Alireza;Ahmadi, Habib
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.295-303
    • /
    • 2018
  • The semi-analytical method to study the nonlinear dynamic behavior of simply supported spiral stiffened functionally graded (FG) cylindrical shells subjected to an axial compression is presented. The FG shell is surrounded by damping and linear/nonlinear elastic foundation. The proposed linear model is based on the two-parameter elastic foundation (Winkler and Pasternak). A three-parameter elastic foundation with hardening/softening cubic nonlinearity is used for nonlinear model. The material properties of the shell and stiffeners are assumed to be FG. Based on the classical plate theory of shells and von $K{\acute{a}}rm{\acute{a}}n$ nonlinear equations, smeared stiffeners technique and Galerkin method, this paper solves the nonlinear vibration problem. The fourth order Runge-Kutta method is used to find the nonlinear dynamic responses. Results are given to consider effects of spiral stiffeners with various angles, elastic foundation and damping coefficients on the nonlinear dynamic response of spiral stiffened simply supported FG cylindrical shells.