DOI QR코드

DOI QR Code

Nonlocal free vibration analysis of a doubly curved piezoelectric nano shell

  • Arefi, Mohammad (Faculty of Mechanical Engineering, Department of Solid Mechanics, University of Kashan)
  • Received : 2017.12.14
  • Accepted : 2018.03.23
  • Published : 2018.05.25

Abstract

In this paper nonlocal free vibration analysis of a doubly curved piezoelectric nano shell is studied. First order shear deformation theory and nonlocal elasticity theory is employed to derive governing equations of motion based on Hamilton's principle. The doubly curved piezoelectric nano shell is resting on Pasternak's foundation. A parametric study is presented to investigate the influence of significant parameters such as nonlocal parameter, two radii of curvature, and ratio of radius to thickness on the fundamental frequency of doubly curved piezoelectric nano shell.

Keywords

Acknowledgement

Supported by : University of Kashan

References

  1. Abdelaziz, H.H., Meziane, M.A.A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2017), "An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates with various boundary conditions", Steel. Compos. Struct., Int. J., 25(6), 693-704.
  2. Ahouel, M., Houari, M.S.A., AddaBedia, E.A. and Tounsi, A. (2016) "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel. Compos. Struct., Int. J., 20(5), 963-981. https://doi.org/10.12989/scs.2016.20.5.963
  3. Alankaya, V. and Oktem, A.S. (2016) "Static analysis of laminated and sandwich composite doubly-curved shallow shells", Steel. Compos. Struct., Int. J., 20(5) 1043-1066.
  4. Alijani, F., Amabili, M., Karagiozis, K. and Bakhtiari-Nejad, F. (2011), "Nonlinear vibrations of functionally graded doubly curved shallow shells", J. Sound. Vib., 330(7), 1432-1454. https://doi.org/10.1016/j.jsv.2010.10.003
  5. Amabili, M. (2005), "Non-linear vibrations of doubly curved shallow shells", Int. J. Non. Linear. Mech., 40(5), 683-710. https://doi.org/10.1016/j.ijnonlinmec.2004.08.007
  6. Arefi, M. (2014), "A complete set of equations for piezomagnetoelastic analysis of a functionally graded thick shell of revolution", Latin. Am. J. Solids. Struct., 11(11), 2073-2092. https://doi.org/10.1590/S1679-78252014001100009
  7. Arefi, M. (2015), "Nonlinear electromechanical analysis of a functionally graded square plate integrated with smart layers resting on Winkler-Pasternak foundation", Smart. Struct. Syst., Int. J., 16(1), 195-211. https://doi.org/10.12989/sss.2015.16.1.195
  8. Arefi, M. (2016a), "Analysis of wave in a functionally graded magneto-electro-elastic nano-rod using nonlocal elasticity model subjected to electric and magnetic potentials", Acta Mech., 227, 2529-2542. https://doi.org/10.1007/s00707-016-1584-7
  9. Arefi, M. (2016b), "Surface effect and non-local elasticity in wave propagation of functionally graded piezoelectric nano-rod excited to applied voltage", Appl. Math. Mech., 37, 289-302. https://doi.org/10.1007/s10483-016-2039-6
  10. Arefi, M. and Allam, M.N.M. (2015), "Nonlinear Responses of an Arbitrary FGP Circular Plate Resting on Foundation", Smart. Struct. Syst., Int. J., 16(1), 81-100. https://doi.org/10.12989/sss.2015.16.1.081
  11. Arefi, M. and Rahimi, G.H. (2010), "Thermo elastic analysis of a functionally graded cylinder under internal pressure using first order shear deformation theory", Sci. Res. Essays, 5(12), 1442-1454.
  12. Arefi, M. and Rahimi, G.H. (2011), "Non linear analysis of a functionally graded square plate with two smart layers as sensor and actuator under normal pressure", Smart. Struct. Syst., Int. J., 8(5), 433-447. https://doi.org/10.12989/sss.2011.8.5.433
  13. Arefi, M. and Rahimi, G.H. (2012a), "Comprehensive thermoelastic analysis of a functionally graded cylinder with different boundary conditions under internal pressure using first order shear deformation theory", Mechanika, 18(1), 5-13.
  14. Arefi, M. and Rahimi, G.H. (2012b), "The effect of nonhomogeneity and end supports on the thermo elastic behavior of a clamped-clamped FG cylinder under mechanical and thermal loads", Int. J. Pres. Ves. Pip., 96, 30-37.
  15. Arefi, M. and Rahimi, G.H. (2012c) "Studying the nonlinear behavior of the functionally graded annular plates with piezoelectric layers as a sensor and actuator under normal pressure", Smart. Struct. Syst., Int. J., 9(2), 127-143. https://doi.org/10.12989/sss.2012.9.2.127
  16. Arefi, M. and Rahimi, G.H. (2014a), "Application of shear deformation theory for two dimensional electro-elastic analysis of a FGP cylinder", Smart. Struct. Syst., Int. J., 13(1), 1-24 https://doi.org/10.12989/sss.2014.13.1.001
  17. Arefi, M. and Rahimi, G.H. (2014b), "Comprehensive piezothermo-elastic analysis of a thick hollow spherical shell", Smart. Struct. Syst., Int. J., 14(2), 225-246. https://doi.org/10.12989/sss.2014.14.2.225
  18. Arefi, M. and Zenkour, A.M. (2016a), "A simplified shear and normal deformations nonlocal theory for bending of functionally graded piezomagnetic sandwich nanobeams in magneto-thermo-electric environment", J. Sandw. Struct. Mater., 18(5), 624-651. https://doi.org/10.1177/1099636216652581
  19. Arefi, M. and Zenkour, A.M. (2016b), "Employing sinusoidal shear deformation plate theory for transient analysis of three layers sandwich nanoplate integrated with piezo-magnetic facesheets", Smart. Mater. Struct., 25(11), 115040. https://doi.org/10.1088/0964-1726/25/11/115040
  20. Arefi, M. and Zenkour, A.M. (2016c), "Free vibration, wave propagation and tension analyses of a sandwich micro/nano rod subjected to electric potential using strain gradient theory", Mater. Res. Exp., 3(11), 115704. https://doi.org/10.1088/2053-1591/3/11/115704
  21. Arefi, M. and Zenkour, A.M. (2017a), "Transient sinusoidal shear deformation formulation of a size-dependent three-layer piezomagnetic curved nanobeam", Acta. Mech., 228(10), 3657-3674. https://doi.org/10.1007/s00707-017-1892-6
  22. Arefi, M. and Zenkour, A.M. (2017b), "Influence of magnetoelectric environments on size-dependent bending results of three-layer piezomagnetic curved nanobeam based on sinusoidal shear deformation theory", J. Sandw. Struct. Mater. DOI: doi.org/10.1177/1099636217723186
  23. Arefi, M. and Zenkour, A.M. (2017c), "Thermal stress and deformation analysis of a size-dependent curved nanobeam based on sinusoidal shear deformation theory", Alexandria Eng. J. [In Press]
  24. Arefi, M. and Zenkour, A.M. (2017d), "Electro-magneto-elastic analysis of a three-layer curved beam", Smart. Struct. Syst., Int. J., 19(6) 695-703.
  25. Arefi, M. and Zenkour, A.M. (2017e), "Influence of micro-lengthscale parameters and inhomogeneities on the bending, free vibration and wave propagation analyses of a FG Timoshenko's sandwich piezoelectric microbeam", J. Sandw. Struct. Mater. DOI: doi.org/10.1177/1099636217714181
  26. Arefi, M. and Zenkour, A.M. (2017f), "Nonlocal electro-thermomechanical analysis of a sandwich nanoplate containing a Kelvin-Voigt viscoelastic nanoplate and two piezoelectric layers", Acta. Mech., 228(2), 475-493. https://doi.org/10.1007/s00707-016-1716-0
  27. Arefi, M. and Zenkour, A.M. (2017g), "Thermo-electromechanical bending behavior of sandwich nanoplate integrated with piezoelectric face-sheets based on trigonometric plate theory", Compos. Struct., 162, 108-122. https://doi.org/10.1016/j.compstruct.2016.11.071
  28. Arefi, M. and Zenkour, A.M. (2017h), "Transient analysis of a three-layer microbeam subjected to electric potential", Int. J. Smart Nano Mater., 8, 20-40. https://doi.org/10.1080/19475411.2017.1292967
  29. Arefi, M. and Zenkour, A.M. (2017i), "Size-dependent vibration and bending analyses of the piezomagnetic three-layer nanobeams", Appl. Phys. A, 123(3), 202.
  30. Arefi, M. and Zenkour, A.M. (2017j), "Wave propagation analysis of a functionally graded magneto-electro-elastic nanobeam rest on Visco-Pasternak foundation", Mech. Res. Com., 79, 51-62. https://doi.org/10.1016/j.mechrescom.2017.01.004
  31. Arefi, M. and Zenkour, A.M. (2017k), "Effect of thermo-magnetoelectro-mechanical fields on the bending behaviors of a threelayered nanoplate based on sinusoidal shear-deformation plate theory", J. Sandw. Struct. Mater.R DOI: 1099636217697497
  32. Arefi, M. and Zenkour, A.M. (2017l), "Size-dependent free vibration and dynamic analyses of piezo-electro-magnetic sandwich nanoplates resting on viscoelastic foundation", Phys. B: Cond. Matter., 521, 188-197. https://doi.org/10.1016/j.physb.2017.06.066
  33. Arefi, M. and Zenkour, A.M. (2017m), "Employing the coupled stress components and surface elasticity for nonlocal solution of wave propagation of a functionally graded piezoelectric Love nanorod model", J. Intel. Mater. Syst. Struct., 28(17), 2403-2413. https://doi.org/10.1177/1045389X17689930
  34. Arefi, M., Rahimi, G.H. and Khoshgoftar, M.J. (2011), "Optimized design of a cylinder under mechanical, magnetic and thermal loads as a sensor or actuator using a functionally graded piezomagnetic material", Int. J. Phys. Sci., 6(27), 6315-6322.
  35. Arefi, M., Zamani, M.H. and Kiani, M. (2017), "Size-dependent free vibration analysis of three-layered exponentially graded nanoplate with piezomagnetic face-sheets resting on Pasternak's foundation", J. Intel. Mater. Syst. Struct., 29(5), 774-786.
  36. Attia, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "Free vibration analysis of functionally graded plates with temperature-dependent properties using various four variable refined plate theories", Steel Compos. Struct., Int. J., 18(1), 187-212. https://doi.org/10.12989/scs.2015.18.1.187
  37. Bahadur, R., Upadhyay, A.K. and Shukla, K.K. (2017), "Static analysis of singly and doubly curved panels on rectangular planform", Steel Compos. Struct., Int. J., 24(6) 659-670.
  38. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart. Struct. Syst., Int. J., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  39. Bellifa, H., Bakora, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "An efficient and simple four variable refined plate theory for buckling analysis of functionally graded plates", Steel Compos. Struct., Int. J., 25(3), 257-270.
  40. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  41. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  42. Bessaim, A., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Adda Bedia, E.A. (2013), "A new higher-order shear and normal deformation theory for the static and free vibration analysis of sandwich plates with functionally graded isotropic face sheets", J. Sandw. Struct. Mater., 15(6), 671-703. https://doi.org/10.1177/1099636213498888
  43. Besseghier, A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Free vibration analysis of embedded nanosize FG plates using a new nonlocal trigonometric shear deformation theory", Smart. Struct. Syst., Int. J., 19(6), 601-614.
  44. Bhimaraddi, A. (1991), "Free vibration analysis of doubly curved shallow shells on rectangular planform using three-dimensional elasticity theory", Int. J. Solids. Struct., 27(7) 897-913.
  45. Bouafia, K., Kaci, A., Houari, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart. Struct. Syst., Int. J., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  46. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  47. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  48. Chakravorty, D., Bandyopadhyay, J.N. and Sinha, P.K. (1996), "Finite element free vibration analysis of doubly curved laminated composite shells", J. Sound. Vib., 191(4), 491-504. https://doi.org/10.1006/jsvi.1996.0136
  49. Chen, H., Wang, A., Hao, Y. and Zhang, W. (2017), "Free vibration of FGM sandwich doubly-curved shallow shell based on a new shear deformation theory with stretching effects", Compos. Struct., 179, 50-60. https://doi.org/10.1016/j.compstruct.2017.07.032
  50. Duc, N.D., Quan, T.Q. and Luat, V.D. (2015), "Nonlinear dynamic analysis and vibration of shear deformable piezoelectric FGM double curved shallow shells under damping-thermo-electromechanical loads", Compos. Struct., 125, 29-40. https://doi.org/10.1016/j.compstruct.2015.01.041
  51. Fan, J. and Zhang, J. (1992), "Analytical Solutions for Thick Doubly Curved Laminated Shells", J. Eng. Mech., 118(7).
  52. Hamidi, A., Houari, M.S.A,. Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates", Steel Compos. Struct., Int. J., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  53. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., Int. J., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  54. Kiani, Y., Shakeri, M. and Eslami, M.R. (2012), "Thermoelastic free vibration and dynamic behavior of an FGM doubly curved panel via the analytical hybrid Laplace-Fourier transformation", Acta. Mech., 223, 1199-1218. https://doi.org/10.1007/s00707-012-0629-9
  55. Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct., Int. J., 25(3), 361-374.
  56. Larbi Chaht, F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar Beg, O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., Int. J., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  57. Lee, S.Y. and Hsiao, J.Y. (2002), "Free in-plane vibrations of curved nonuniform beams", Acta. Mech., 155(3-4) 173-189. https://doi.org/10.1007/BF01176241
  58. Librescu, L. and Chang, M.Y. (1993), "Effects of geometric imperfections on vibration of compressed shear deformable laminated composite curved panels", Acta. Mech., 96, 203-224. https://doi.org/10.1007/BF01340710
  59. Menasria, A., Bouhadra, A., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2017), "A new and simple HSDT for thermal stability analysis of FG sandwich plates", Steel Compos. Struct., Int. J., 25(2), 157-175.
  60. Meziane, M.A.A., Abdelaziz, H.H. and Tounsi, A. (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  61. Mouffoki, A., Adda Bedia, E.A., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2017), "Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory", Smart. Struct. Syst., Int. J., 20(3), 369-383.
  62. Nasihatgozar, M., Khalili, S.M.R. and Malekzadeh Fard, K. (2017), "General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core using higher order shear deformation theory", Steel Compos. Struct., Int. J., 24(2), 151-176.
  63. Pouresmaeeli, S. and Fazelzadeh, S.A. (2016), "Frequency analysis of doubly curved functionally graded carbon nanotubereinforced composite panels", Acta. Mech., 227(10), 2765-2794. https://doi.org/10.1007/s00707-016-1647-9
  64. Qatu, M.S. and Leissa, A.W. (1991a), "Free vibrations of completely free doubly curved laminated composite shallow shells", J. Sound. Vib., 151(1), 9-29. https://doi.org/10.1016/0022-460X(91)90649-5
  65. Qatu, M.S. and Leissa, A.W. (1991b), "Natural frequencies for cantilevered doubly-curved laminated composite shallow shells", Compos. Struct., 17(3), 227-255. https://doi.org/10.1016/0263-8223(91)90053-2
  66. Rahimi, G.H., Arefi, M. and Khoshgoftar, M.J. (2012), "Electro elastic analysis of a pressurized thick-walled functionally graded piezoelectric cylinder using the first order shear deformation theory and energy method", Mechanika, 18(3), 292-300.
  67. Shi, J.W., Nakatani, A. and Kitagawa, H. (2003), "Effects of inplane constraints on the free vibration of a symmetrically laminated doubly curved panel", Acta. Mech., 166, 89-102. https://doi.org/10.1007/s00707-003-0051-4
  68. Thakur, S.N., Ray, C. and Chakraborty, S. (2017), "A new efficient higher-order shear deformation theory for a doubly curved laminated composite shell", Acta. Mech., 228(1), 69-87. https://doi.org/10.1007/s00707-016-1693-3
  69. Tornabene, F. and Ceruti, A. (2013), "Free-Form Laminated Doubly-Curved Shells and Panels of Revolution Resting on Winkler-Pasternak Elastic Foundations: A 2-D GDQ Solution for Static and Free Vibration Analysis", World. J. Mech., 3, 1-25.
  70. Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E. (2016), "Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells", Compos. Part. B: Eng., 89, 187-218. https://doi.org/10.1016/j.compositesb.2015.11.016
  71. Veysi, A., Shabani, R. and Rezazadeh, Gh. (2017), "Nonlinear vibrations of micro-doubly curved shallow shells based on the modified couple stress theory", Nonlinear. Dyn., 87, 2051-2065. https://doi.org/10.1007/s11071-016-3175-5
  72. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., Int. J., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  73. Zenkour, A.M. and Arefi, M. (2017), "Nonlocal transient electrothermomechanical vibration and bending analysis of a functionally graded piezoelectric single-layered nanosheet rest on visco-Pasternak foundation", J. Therm. Stress., 40, 167-184. https://doi.org/10.1080/01495739.2016.1229146

Cited by

  1. Non-local orthotropic elastic shell model for vibration analysis of protein microtubules vol.25, pp.3, 2018, https://doi.org/10.12989/cac.2020.25.3.245
  2. On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes vol.38, pp.5, 2018, https://doi.org/10.12989/scs.2021.38.5.533
  3. Electromechanical energy absorption, resonance frequency, and low-velocity impact analysis of the piezoelectric doubly curved system vol.157, pp.None, 2018, https://doi.org/10.1016/j.ymssp.2021.107723