• Title/Summary/Keyword: twisted

Search Result 799, Processing Time 0.021 seconds

PRIMITIVE/SEIFERT KNOTS WHICH ARE NOT TWISTED TORUS KNOT POSITION

  • Kang, Sungmo
    • Honam Mathematical Journal
    • /
    • v.35 no.4
    • /
    • pp.775-791
    • /
    • 2013
  • The twisted torus knots and the primitive/Seifert knots both lie on a genus 2 Heegaard surface of $S^3$. In [5], J. Dean used the twisted torus knots to provide an abundance of examples of primitive/Seifert knots. Also he showed that not all twisted torus knots are primitive/Seifert knots. In this paper, we study the other inclusion. In other words, it shows that not all primitive/Seifert knots are twisted torus knot position. In fact, we give infinitely many primitive/Seifert knots that are not twisted torus knot position.

SOME SYMMETRY IDENTITIES FOR GENERALIZED TWISTED BERNOULLI POLYNOMIALS TWISTED BY UNRAMIFIED ROOTS OF UNITY

  • Kim, Dae San
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.603-618
    • /
    • 2015
  • We derive three identities of symmetry in two variables and eight in three variables related to generalized twisted Bernoulli polynomials and generalized twisted power sums, both of which are twisted by unramified roots of unity. The case of ramified roots of unity was treated previously. The derivations of identities are based on the p-adic integral expression, with respect to a measure introduced by Koblitz, of the generating function for the generalized twisted Bernoulli polynomials and the quotient of p-adic integrals that can be expressed as the exponential generating function for the generalized twisted power sums.

MULTIPLICATION FORMULA AND (w, q)-ALTERNATING POWER SUMS OF TWISTED q-EULER POLYNOMIALS OF THE SECOND KIND

  • CHOI, JI EUN;KIM, AHYUN
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.3_4
    • /
    • pp.455-467
    • /
    • 2021
  • In this paper, we define twisted q-Euler polynomials of the second kind and explore some properties. We find generating function of twisted q-Euler polynomials of the second kind. Also, we investigate twisted q-Raabe's multiplication formula and (w, q)-alternating power sums of twisted q-Euler polynomials of the second kind. At the end, we define twisted q-Hurwitz's type Euler zeta function of the second kind.

Twisted rudder for reducing fuel-oil consumption

  • Kim, Jung-Hun;Choi, Jung-Eun;Choi, Bong-Jun;Chung, Seok-Ho
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.3
    • /
    • pp.715-722
    • /
    • 2014
  • Three twisted rudders fit for large container ships have been developed; 1) the Z-twisted rudder that is an asymmetry type taking into consideration incoming flow angles of the propeller slipstream, 2) the ZB-twisted rudder with a rudder bulb added onto the Z-twisted rudder, and 3) the ZB-F twisted rudder with a rudder fin attached to the ZB-twisted rudder. The twisted rudders have been designed computationally with the hydrodynamic characteristics in a self-propulsion condition in mind. The governing equation is the Navier-Stokes equations in an unsteady turbulent flow. The turbulence model applied is the Reynolds stress. The calculation was carried out in towing and self-propulsion conditions. The sliding mesh technique was employed to simulate the flow around the propeller. The speed performances of the ship with the twisted rudders were verified through model tests in a towing tank. The twisted versions showed greater performance driven by increased hull efficiency from less thrust deduction fraction and more effective wake fraction and decreased propeller rotating speed.

ON q-ANALGUE OF THE TWISTED L-FUNCTIONS AND q-TWISTED BERNOULLI NUMBERS

  • Simsek, Yilmaz
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.6
    • /
    • pp.963-975
    • /
    • 2003
  • The aim of this work is to construct twisted q-L-series which interpolate twisted q-generalized Bernoulli numbers. By using generating function of q-Bernoulli numbers, twisted q-Bernoulli numbers and polynomials are defined. Some properties of this polynomials and numbers are described. The numbers $L_{q}(1-n,\;X,\;{\xi})$ is also given explicitly.

A numerical and experimental study on the performance of a twisted rudder with wavy configuration

  • Shin, Yong Jin;Kim, Moon Chan;Lee, Joon-Hyoung;Song, Mu Seok
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.131-142
    • /
    • 2019
  • In this paper, a Wavy Twisted Rudder (WTR) is proposed to address the discontinuity of the twisted section and increase the stalling angle in comparison to a conventional full-spade Twisted Rudder (TR). The wave configuration was applied to a KRISO Container Ship (KCS) to confirm the characteristics of the rudder under the influence of the propeller wake. The resistance, self-propulsion performance, and rudder force at high angles of the wavy twisted rudder and twisted rudder were compared using Computational Fluid Dynamics (CFD). The numerical results were compared with the experimental results. The WTR differed from the TR in the degree of separation flow at large rudder angles. This was verified by visualizing the streamline around the rudder. The results confirmed the superiority of the WTR in terms of its delayed stall and high lift-drag ratio.

Characteristics of Heat Transfer in the Channel with Twisted Tape

  • Ahn, Soo-Whan;Kang, Ho-Keun
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.15 no.3
    • /
    • pp.122-128
    • /
    • 2007
  • Heat transfer distributions and friction factors in square channels (3.0 ${\times}$ 3.0 cm) with twisted tape inserts and with twisted tape inserts plus interrupted ribs are respectively investigated. The rib height-to-channel hydraulic diameter ratio, $e/D_h$, is kept at 0.067 and test section length-to-hydraulic diameter ratio, $L/D_h$ is 30. The square ribs are arranged to follow the trace of the twisted tape and along the flow direction defined as axial interrupted ribs. The twisted tape is 0.1 mm thick carbon steel sheet with diameter of 2.8 cm, length of 90 cm, and 2.5 turns. Two heating conditions are investigated for test channels with twisted tape inserts and rib turbulators: (1) electric heat uniformly applied to four side walls of the square duct, and (2) electric heat uniformly applied to two opposite ribbed walls of the square channel. Results show that the twisted tape with interrupted ribs provides a higher overall heat transfer performance over the twisted tape with no ribs.

Development of Twisted Rudder to Reduce Fuel Oil Consumption for Medium Size Container Ship (중형 컨테이너선의 연료절감형 비틀림 타 개발)

  • Chun, Ho-Hwan;Cha, Kyung-Jung;Lee, Inwon;Choi, Jung-Eun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.2
    • /
    • pp.169-177
    • /
    • 2018
  • Twisted rudder, twisted rudder with bulb, and twisted rudder with bulb and fin have been developed computationally for 3,000 TEU container ship through parametric study. The objective function is to minimize delivered power in model scale. Design variables are twisted angle, rudder bulb diameter and fin angle. The governing equation is Reynolds averaged Navier-Stokes equations in an unsteady turbulent flow and the Reynolds stress model applied for the turbulent closure. A double body model is used for the treatment of free-surface. The calculation was carried out in towing and self-propulsion conditions at design speed. The sliding mesh technique was employed to simulate the flow around the propeller. Form factor is obtained from the towing computation. Self-propulsion point is obtained from the self-propelled computations at two propeller rotating speeds. The delivered power due to the designed twisted rudder, twisted rudder with bulb, and twisted rudder with bulb and fin are reduced by 1.1%, 1.6%, and 2.0%, respectively.