• Title/Summary/Keyword: tunnel geology

Search Result 201, Processing Time 0.029 seconds

Prediction of the Fractures at Inexcavation Spaces Based on the Existing Data (터널의 굴착면 전반부에 분포하는 절리의 예측)

  • Hwang, Sang-Gi
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.643-648
    • /
    • 2014
  • Understanding of fracture networks and rock mass properties during tunnel construction is extremely important for the prediction of dangers during excavation, and for deciding on appropriate excavation techniques and support. However, rapid construction process do not allow sufficient time for surveys and interpretations for spatial distributions of fractures and rock mass properties. This study introduces a new statistical approach for predicting joint distributions at foreside of current excavation face during the excavation process. The proposed methodology is based on a cumulative space diagram for joint sets. The diagram displays the cumulative spacing between adjacent joints on the vertical axis and the sequential position of each joint plotted at equally spaced intervals on the horizontal axis. According to the diagram, the degree of linearity of points representing the regularity of joint spacing; a linear trend of the points indicates that the joints are evenly spaced, with the slope of the line being directly related to the spacing. The linear points which are stepped indicates that the fracture set show clustered distribution. A clustered pattern within the linear group of points indicates a clustered joint distribution. Fractures surveyed from an excavated space can be plotted on this diagram, and the diagram can then be extended further according to the plotted diagram pattern. The extension of the diagram allows predictions about joint spacing in areas that have not yet been excavated. To test the model, we collected and analyzed data during excavation of a 10-m-long tunnel. Fractures in a 3-m zone behind the excavation face were predicted during the excavation, and the predictions were compared with observations. The methodology yielded reasonably good predictions of joint locations.

A Study on Influence Factors for Tunnel Collapse Risk Analysis using Delphi Method (델파이 기법을 활용한 터널 붕괴 위험도 분석을 위한 영향인자 도출에 관한 연구)

  • Kim, Jeong Heum;Kim, Chang Yong;Lee, Seung Soo;Lee, Jun Hwan
    • The Journal of Engineering Geology
    • /
    • v.27 no.2
    • /
    • pp.165-172
    • /
    • 2017
  • This research aims to define influence factors to perform an optimized section design and evaluate tunnel collapse risk during construction using Delphi technique. A total of five upper classification systems were constructed through literature review, pervious research analysis, and brainstorming of expert group for establishing influence factors. The $1^{st}$, $2^{nd}$, and $3^{rd}$ Delphi survey process was proceeded by panel group which is consisted 21 experts to prevent errors and bias in the expert judgement process. In Delphi $1^{st}$ survey, a total of 22 influence factors candidates were derived through open-ended questionnaire. In Delphi $2^{nd}$ survey, questionnaire was proceeded based on 7-point Likert scale method. In order to verify the validity, CVR (Content Validity Ration) analysis was performed to exclude inappropriate candidates. In the $3^{rd}$ survey, verification of influence factors was proceeded once more with the result of $2^{nd}$ survey, and lastly, a total of 14 influence factors was derived by CVR and COV (Content Validity Ration) analysis for response of experts.

A Case Study for the Support Pattern Appropriateness in Rock Tunneling Designs (지하철 설계시의 지보형식 적정성에 관한 연구)

  • 김수정;장태우
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.167-179
    • /
    • 1995
  • The only three elements such as RQD, N -value and Es were used as a quantitative standard for the design of supporr pattern determidetion on subway line 8th in Seoul. Because the support pattern that was obtained by these elements could not he determined on the basis of the quantitative of geology and the orientations and properties of discontinuity planes, there have been some problems in determining the economic support pattern and tunnel stability. Therefore, in an attempt to determine the stable and economic support pattern with more quantitative elements, more flerrible rock mass classification with geologic conditions was performed by using RMR at 1745 sections and Q-system at 374 sections within Seongnam block on subway line 8th. Then, rusults by these two methods were compared with standard support pattern of the subway line 8th. Moreover, relationships between geology, geologic structures and topography to rock mass grades were studied. According to the rusult of this study, it is judged that the standard support pattern designed with PD-4 or PS - 4 should have been subdivided into 4~6 support patterns. Some sections where geologic structures such as faults and joints are developed tend to have rock mass grades. And they also have low rock mass grades near valley. On thr other hand, they show intermediate grades at piedmont area and the greatest ones at high mountains.

  • PDF

An Engineering Geological Study of Moryang Fault for Tunnel Design (터널설계를 위한 모량단층의 지질공학적 연구)

  • 방기문;우상우
    • The Journal of Engineering Geology
    • /
    • v.10 no.3
    • /
    • pp.237-245
    • /
    • 2000
  • This study was for characterizing the engineering geological properties of Moryang Fault, and providing the basic data for tunnel design. Land-sat image analysis, geologic surveys, resistivity prospecting and 3-dimensional analysis for results of resistivity prospecting, core boring, mineralogical identification and chemical analysis for the bedrock, and K-Ar age dating for fault clay were carried out for the study of Moryang Fault which is located at Duckhyunri Sangbukmyun Uljinkun Ulsan metropolis. As a result of the study, it was shown that strike/dip was N20-3$0^{\circ}C$E/70-9$0^{\circ}C$NW, width of fault ranged from 20 to 60m(maximum 80m), and depth was more than 50m. K-Ar age dating results of fault clay were 5,700$\pm$1.129Ma and 1,900$\pm$0.380Ma. Hydraulic fracturing test results showed the principal stress direction similar to the strike of Moryang Fault.

  • PDF

A New Method for the Analysis of Measured Displacements during Tunnelling using Control Charts (관리도를 이용한 터널 시공현장 계측변위 분석 기법 개발)

  • Yim, Sung-Bin;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.261-268
    • /
    • 2009
  • Tunnel measurements provide crucial information on the ground stability during the excavation, visualizing the ground behavioral characteristics with quantitative dada. Generally, the frequency of the measurements is greater during the early stage of the tunnelling process and reduced with time. However, there are no quantitative criteria established for either the activities, such as the time, location and frequency of the measurement or the management guidance, especially for the site of subtle and unexpected displacement during the excavation. It is, however, still challenging to assess behavioral characteristics of subtle and unexpected displacement after stabilization. In this study, we propose a new method to assess stability and to analysis the behavioral characteristics of subtle and unexpected displacement after stabilization using statistic control charts of displacements. We also present a test result on the applicability of control chart and CUSUM control chart to measured displacements.

Analysis of Slope Stability at the End of OO tunnel being Distributed by Mica Schist (운모편암 분포지인 OO 터널 종점부에서 절토사면의 안전성 분석 연구)

  • Lee, Byung-Joo;SunWoo, Choon
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.287-294
    • /
    • 2009
  • To be design the slope, the area distributed the mica schist which was metamorphosed by shale or mudstone must carefully consider the stability. Mica schist is another unstable rock for slope by schistosity, cleavage, axial plane of a fold etc. In general mica schist contains the swelling clay minerals such as smectite, vermiculite and montmorillonite. These minerals make the slope unstable. At OO tunnel construction area for the rail way of the Kyungbu high speed train, the slope of mica schist is very unstable by the distribution phenomena of the discontinuous plane such as joints which are 1-5 cm spacing and thrust and strike-slip fault. By the drilling core of this area, most RQD have 0-20%.

Application Techniques of 2D-Resistivity Structure for Estimation of Inferred Fracture Zone in Weathered Slope (풍화사면에서의 추정파쇄대 평가를 위한 2차원 전기비저항 구조도 적용 기법)

  • Kim, Jae-Hong;Park, Chal-Sook;Lee, Hyun-Jae;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.323-330
    • /
    • 2009
  • Electrical resistivity survey is applied for estimation of inferred fault and fractured zone in civil engineering and environment field. While 15 m diameter and 3 lines tunnels are excavated. It is recognized that core stone and fractured zone is existed in the weathered slope of the entrance to a tunnel. To make confirmation geological characteristics, dipole-dipole electric resistivity survey was carried out in weathered slope of the entrance to a tunnel. Core stone distribution and fracture zone characteristics are estimated by reverse analysis and 2D-resistivity structure using FDM.

Field Measurements for the Lattice Girder and the Shotcrete Lining (격자지보와 숏크리트 계측에 대한 현장실험 연구)

  • Kim, Hak-Joon;Jin, Soo-Hwan;Park, Si-Hyun
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.93-102
    • /
    • 2008
  • The use of lattice girder is increased at the tunnel site in Korea because of the several advantages over the traditional H-steel rib. The lattice girder supports the ground with shotcretes, forming a combined support system. Therefore, stress measurements at the lattice girder are necessary to calculated the ground loads. However, field measurements at the lattice girder are rarely performed at the tunnel site. The proper way of stress measurements for the lattice girder is not fully established in Korea. The correction of stress measurements at the shotcretes is often disregarded even though the measured stresses include non-stress related strains. Results of the stress measurements obtained from the lattice girder and non-stress shotcretes are used to improve the credibility of the stress measurements at the primary lining.

Evaluation of Support Requirements for the Single Shell Tunnels from the Case Study of Rock Mass Classifications (국내 암반분류 사례를 통한 싱글쉘 터널 지보량 산정 연구)

  • Kim Hak-Joon;Lee Seong-Ho;Shin Hyu-Seong;Bae Gyu-Jin
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.283-291
    • /
    • 2006
  • Shotcrete is used as a permanent lining in single shell tunnels even though shotcrete has been used as a temporary lining in NATM tunnels. Therefore, the accurate evaluation of strength parameters is very crucial because the reliable estimation of loads acting on the shotcretes is necessary to maintain the stability of tunnels. The evaluation of strength parameters of the ground far the single shell tunnels should be investigated to adapt the method in Korea because the geological condition of Korea is different from that of other country. Rock classification and strength parameters obtained from 25 tunnel sites were investigated for this study. Support types fur the different rock classes are suggested for the single shell tunnels in Korea based on the NMT because Q-system has been widely used in Korea. The support types in terms of both Q and RMR values are given based on the correlation of Q and RMR values obtained from the case studies.

Suggestion of Regression Equations for Estimating RMR Factor Rating by Geological Condition (지질 조건을 고려한 RMR 인자값 추정을 위한 선형회귀식 제안)

  • Kim, Kwang-Yeom;Yim, Sung-Bin;Kim, Sung-Kwon;Kim, Chang-Yong;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.555-566
    • /
    • 2007
  • In general, RMR classification system is used for the support design of a tunnel. Face mapping during excavation and RMR-based rock classifications are conducted in order to provide information for complementary changes to preliminary survey plans and for continuous geological estimations in direction of tunnel route. Although they are ever so important, there are not enough time for survey in general and sometimes even face mapping is not available. Linear regression analysis for the estimation of mediating RQD and condition of discontinuities, which require longer time and more detailed observation in RMR, was performed and optimum regression equations are suggest as the result. The geological data collected from tunnels were analyzed in accordance with three rock types as sedimentary rock, phyllite and granite to see geological effects, generally not been considered in previous researches. Parameters for the regression analysis were set another RMR factor.