• Title/Summary/Keyword: triangular operator

Search Result 26, Processing Time 0.025 seconds

ON SKEW SYMMETRIC OPERATORS WITH EIGENVALUES

  • ZHU, SEN
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.6
    • /
    • pp.1271-1286
    • /
    • 2015
  • An operator T on a complex Hilbert space H is called skew symmetric if T can be represented as a skew symmetric matrix relative to some orthonormal basis for H. In this paper, we study skew symmetric operators with eigenvalues. First, we provide an upper-triangular operator matrix representation for skew symmetric operators with nonzero eigenvalues. On the other hand, we give a description of certain skew symmetric triangular operators, which is based on the geometric relationship between eigenvectors.

A NOTE ON A FINITE TRIANGULAR OPERATOR MATRIX

  • Ko, Eun-Gil
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.561-569
    • /
    • 1997
  • In this paper we shall characterize a finite triangular operator matrix with M-hyponormal operators on main diagonal. This shows in particualr that such an operator is subscalar operator. As a corollary, we get that every algebraic operator is subscalar.

  • PDF

UPPER TRIANGULAR OPERATORS WITH SVEP

  • Duggal, Bhagwati Prashad
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.235-246
    • /
    • 2010
  • A Banach space operator A $\in$ B(X) is polaroid if the isolated points of the spectrum of A are poles of the resolvent of A; A is hereditarily polaroid, A $\in$ ($\mathcal{H}\mathcal{P}$), if every part of A is polaroid. Let $X^n\;=\;\oplus^n_{t=i}X_i$, where $X_i$ are Banach spaces, and let A denote the class of upper triangular operators A = $(A_{ij})_{1{\leq}i,j{\leq}n$, $A_{ij}\;{\in}\;B(X_j,X_i)$ and $A_{ij}$ = 0 for i > j. We prove that operators A $\in$ A such that $A_{ii}$ for all $1{\leq}i{\leq}n$, and $A^*$ have the single-valued extension property have spectral properties remarkably close to those of Jordan operators of order n and n-normal operators. Operators A $\in$ A such that $A_{ii}$ $\in$ ($\mathcal{H}\mathcal{P}$) for all $1{\leq}i{\leq}n$ are polaroid and have SVEP; hence they satisfy Weyl's theorem. Furthermore, A+R satisfies Browder's theorem for all upper triangular operators R, such that $\oplus^n_{i=1}R_{ii}$ is a Riesz operator, which commutes with A.

Evaluating Distribution Trends of Classification Accuracy by Triangular Training Operator in SAR/VIR FCC : A Case Study of Songkhla Lake Basin in Thailand (SAR/VIR FCC에서 삼각 트레이닝 도구에 의한 분류정확도 분포추세 평가: 태국의 송클라 호수 유역을 사례로)

  • Jung Sup Um
    • Journal of the Korean Geographical Society
    • /
    • v.38 no.3
    • /
    • pp.375-388
    • /
    • 2003
  • This study mainly focuses on evaluating how the triangular training operator could improve classification accuracy in SAR(Synthetic Aperture Radar) and VIR FCC(Visible Infra-red, False Colour Composite). The techniques for the determination of the most informative SAR/VIR combinations in the triangular space diagram, as developed tv the author of the paper, are given and the results obtained are presented. The SAR alone, VIR alone and SAR/VIR FCC classification showed trends for gradual improvement of accuracy. Accuracy distribution pattern for individual classes could be explained closely related to SAR/VIR signature components in the process of the triangular synergistic training. Due to contribution of SAR signature in training samples, it was possible to isolate major terrain features such as cloud cover area and roughness target with acceptable spatial precision. It is anticipated that this research output could be used as a valuable reference for distribution trends of classification accuracy obtained by triangular channel space based training in synergistic application.

On the Fine Spectrum of the Lower Triangular Matrix B(r, s) over the Hahn Sequence Space

  • Das, Rituparna
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.441-455
    • /
    • 2017
  • In this article we have determined the spectrum and fine spectrum of the lower triangular matrix B(r, s) on the Hahn sequence space h. We have also determined the approximate point spectrum, the defect spectrum and the compression spectrum of the operator B(r, s) on the sequence space h.

LIE IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • LEE, SANG KI;KANG, JOO HO
    • Journal of applied mathematics & informatics
    • /
    • v.36 no.3_4
    • /
    • pp.237-244
    • /
    • 2018
  • Let ${\mathcal{H}}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let L be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in ${\mathcal{L}}$. Let p and q be natural numbers (p < q). Let ${\mathcal{A}}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $T_{(p,q)}=0$ for all T in ${\mathcal{A}}$. If ${\mathcal{A}}$ is a Lie ideal, then $T_{(p,p)}=T_{(p+1,p+1)}={\cdots}=T_{(q,q)}$ and $T_{(i,j)}=0$, $p{\eqslantless}i{\eqslantless}q$ and i < $j{\eqslantless}q$ for all T in ${\mathcal{A}}$.

IDEALS IN THE UPPER TRIANGULAR OPERATOR ALGEBRA ALG𝓛

  • Lee, Sang Ki;Kang, Joo Ho
    • Honam Mathematical Journal
    • /
    • v.39 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • Let $\mathcal{H}$ be an infinite dimensional separable Hilbert space with a fixed orthonormal base $\{e_1,e_2,{\cdots}\}$. Let $\mathcal{L}$ be the subspace lattice generated by the subspaces $\{[e_1],[e_1,e_2],[e_1,e_2,e_3],{\cdots}\}$ and let $Alg{\mathcal{L}}$ be the algebra of bounded operators which leave invariant all projections in $\mathcal{L}$. Let p and q be natural numbers($p{\leqslant}q$). Let $\mathcal{B}_{p,q}=\{T{\in}Alg\mathcal{L}{\mid}T_{(p,q)}=0\}$. Let $\mathcal{A}$ be a linear manifold in $Alg{\mathcal{L}}$ such that $\{0\}{\varsubsetneq}{\mathcal{A}}{\subset}{\mathcal{B}}_{p,q}$. If $\mathcal{A}$ is an ideal in $Alg{\mathcal{L}}$, then $T_{(i,j)}=0$, $p{\leqslant}i{\leqslant}q$ and $i{\leqslant}j{\leqslant}q$ for all T in $\mathcal{A}$.

Development of Digital Image Forgery Detection Method Utilizing LE(Local Effect) Operator based on L0 Norm (L0 Norm 기반의 LE(Local Effect) 연산자를 이용한 디지털 이미지 위변조 검출 기술 개발)

  • Choi, YongSoo
    • Journal of Software Assessment and Valuation
    • /
    • v.16 no.2
    • /
    • pp.153-162
    • /
    • 2020
  • Digital image forgery detection is one of very important fields in the field of digital forensics. As the forged images change naturally through the advancement of technology, it has made it difficult to detect forged images. In this paper, we use passive forgery detection for copy paste forgery in digital images. In addition, it detects copy-paste forgery using the L0 Norm-based LE operator, and compares the detection accuracy with the forgery detection using the existing L2, L1 Norm-based LE operator. In comparison of detection rates, the proposed lower triangular(Ayalneh and Choi) window was more robust to BAG mismatch detection than the conventional window filter. In addition, in the case of using the lower triangular window, the performance of image forgery detection was measured increasingly higher as the L2, L1 and L0 Norm LE operator was performed.