• 제목/요약/키워드: tree map

Search Result 317, Processing Time 0.021 seconds

A Study on the Analysis of the Configuration and Properties of University Campus Cores through Space Syntax (공간구문론을 이용한 대학교 캠퍼스 코어의 공간구조 유형 및 특성 분석)

  • Lee, Dong-Joo;Ko, Eun-Hyung
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.16 no.6
    • /
    • pp.13-20
    • /
    • 2009
  • The purpose of this study is to analyze the configuration and properties of university campus cores for systematic approach and planning through space syntax based on master plans of 55 universities in Korea. The results of this study showed that: first, the campus cores were classified into 10 types through axial map analysis. They were '一 type', '二 type', 'ㄱ type', 'T type', '+ type', 'radiation type', 'grid type', 'polygon type', 'tree structure type' and 'combination type'.(table 7) The frequency of '一 type' was the highest by 27.2%, and 'radiation type' was the next by 14.5%; second, the integration value was 2.03(+ type), te90(grid type), te75(ㄱ type), te74(一 type), te67(二 type), te63(T type), te46(polygon type), te347(tree structure type) and te343(radiation type).(table 9) We could categorize the 'radiation type' and the 'tree structure type' as the first group, the 'polygon type' as the second group, the 'T type', the '二 type', the '一 type', and the 'ㄱ type' as the third group, the 'grid type' as the fourth group, the '+ type' as the fifth group; third, cases that the integration value of access road was very low(58.2%) was much more frequent than that of very high(32.7%); fourth, the most important space in the campus core were as follows: library and media center(18.1%), administration buildings and headquarters(15.7%), student center(15.7%), lecturing building(13.9%), streets and squares(13.3%).

Impervious Surface Estimation Using Landsat-7 ETM+Image in An-sung Area (Landsat-7 ETM+영상을 이용한 안성지역의 불투수도 추정)

  • Kim, Sung-Hoon;Yun, Kong-Hyun;Sohn, Hong-Gyoo;Heo, Joon
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.6
    • /
    • pp.529-536
    • /
    • 2007
  • As the Imperious surface is an important index for the estimation of urbanization and environmental change, the increase of impervious surfaces causes meteorological and hydrological changes like urban climate change, urban flood discharge increasing, urban flood frequency increasing, and urban flood modelling during the rainy season. In this study, the estimation of impervious surfaces is performed by using Landsat-7 ETM+ image in An-sung area. The construction of sampling data and checking data is used by IKONOS image. It transform to a tasselled cap and NDVI through the reflexibility rate of Landsat ETM+ image and analyze various variables that influence on impervious surface. Finally, the impervious surfaces map is accomplished by regression tree algorithm.

Impervious Surface Estimation of Jungnangcheon Basin Using Satellite Remote Sensing and Classification and Regression Tree (위성원격탐사와 분류 및 회귀트리를 이용한 중랑천 유역의 불투수층 추정)

  • Kim, Sooyoung;Heo, Jun-Haeng;Heo, Joon;Kim, SungHoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.915-922
    • /
    • 2008
  • Impervious surface is an important index for the estimation of urbanization and the assessment of environmental change. In addition, impervious surface influences on short-term rainfall-runoff model during rainy season in hydrology. Recently, the necessity of impervious surface estimation is increased because the effect of impervious surface is increased by rapid urbanization. In this study, impervious surface estimation is performed by using remote sensing image such as Landsat-7 ETM+image with $30m{\times}30m$ spatial resolution and satellite image with $1m{\times}1m$ spatial resolution based on Jungnangcheon basin. A tasseled cap transformation and NDVI(normalized difference vegetation index) transformation are applied to Landsat-7 ETM+ image to collect various predict variables. Moreover, the training data sets are collected by overlaying between Landsat-7 ETM+ image and satellite image, and CART(classification and regression tree) is applied to the training data sets. As a result, impervious surface prediction model is consisted and the impervious surface map is generated for Jungnangcheon basin.

Selection and Management Strategies for Restoration and Conservation Target Sites of Mankyua chejuense using Species Distribution Models (종 분포 모형을 활용한 제주고사리삼의 복원 및 보전 대상지 선정과 관리방안)

  • Lee, Sang-Wook;Jang, Rae-Ik;Oh, Hong-Shik;Jeon, Seong-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.3
    • /
    • pp.29-42
    • /
    • 2023
  • As the destruction of habitats due to recent development continues, there is also increasing interest in endangered species. Mankyua chejuense is a vulnerable species that is sensitive to changes in population and habitat, and it has recently been upgraded from Endangered Species II to Endangered Species I, requiring significant management efforts. So in this study, we analyzed the potential habitats of Mankyua chejuense using MaxEnt(Maximum Entropy) modeling. We developed three models: one that considered only environmental characteristics, one that considered artificial factors, and one that reflected the habitat of dominant tree species in the overstory. Based on previous studies, we incorporated environmental and human influence factors for the habitats of Mankyua chejuense into spatial information, and we also used the habitat distribution models of dominant tree species, including Ulmus parvifolia, Maclura tricuspidata, and Ligustrum obtusifolium, that have been previously identified as major overstory species of Mankyua chejuense. Our analysis revealed that rock exposure, elevation, slope, forest type, building density, and soil type were the main factors determining the potential habitat of Mankyua chejuense. Differences among the three models were observed in the edges of the habitats due to human influence factors, and results varied depending on the similarity of the habitats of Mankyua chejuense and the dominant tree species in the overstory. The potential habitats of Mankyua chejuense presented in this study include areas where the species could potentially inhabit in addition to existing habitats. Therefore, these results can be used for the conservation and management planning of Mankyua chejuense.

A Study on Preprocessing Method in Deep Learning for ICS Cyber Attack Detection (ICS 사이버 공격 탐지를 위한 딥러닝 전처리 방법 연구)

  • Seonghwan Park;Minseok Kim;Eunseo Baek;Junghoon Park
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.36-47
    • /
    • 2023
  • Industrial Control System(ICS), which controls facilities at major industrial sites, is increasingly connected to other systems through networks. With this integration and the development of intelligent attacks that can lead to a single external intrusion as a whole system paralysis, the risk and impact of security on industrial control systems are increasing. As a result, research on how to protect and detect cyber attacks is actively underway, and deep learning models in the form of unsupervised learning have achieved a lot, and many abnormal detection technologies based on deep learning are being introduced. In this study, we emphasize the application of preprocessing methodologies to enhance the anomaly detection performance of deep learning models on time series data. The results demonstrate the effectiveness of a Wavelet Transform (WT)-based noise reduction methodology as a preprocessing technique for deep learning-based anomaly detection. Particularly, by incorporating sensor characteristics through clustering, the differential application of the Dual-Tree Complex Wavelet Transform proves to be the most effective approach in improving the detection performance of cyber attacks.

Vegetation of Mok-do Island: Its Spatial Distribution and Monitoring for Vegetation Conservation (목도의 식생: 그 보전을 위한 식물군락의 공간분포와 모니터링)

  • Kim, Jong-Won;Jegal, Jae-Cheol;Lee, Byeong-Yeol;Lee, Yul-Gyeong;Mun, Gyeong-Hui
    • The Korean Journal of Ecology
    • /
    • v.24 no.5
    • /
    • pp.259-265
    • /
    • 2001
  • This paper describes the species composition of the remnant forest vegetation (Natural Monument No. 65) in the Mok-do island of Ulsan city and its relation to ecological long-term monitoring. Syntaxonomical classification and actual vegetation map were depicted in very fine scale 1:800 for better understanding spatial distribution and vitality of individual trees and communities. A total of 111 species and 13 plant communities occurred on the 19,166 ㎡ area. Evergreen broad-leaved forest of Machilus thunbergii is a representative vegetation type, which covers 37.4% of the island area. Evergreen coniferous forest of Pinus thunbergii covers 18.6% of the island. These two forests occurred at different parts of the island, i.e., the former at the rearward and the later at the frontward of island against marine. 95.7% of trees analysed was determined as critically and absolutely monitored individuals. From a conservation perspective the Mok-do vegetation is extremely vulnerable, which must be long-termly monitored using an assessment of tree vitality and a fine scale map of vegetation.

  • PDF

3D Building Modeling Using LIDAR Data and Digital Map (LIDAR 데이터와 수치지도를 이용한 3차원 건물모델링)

  • Kim, Heung-Sik;Chang, Hwi-Jeong;Cho, Woo-Sug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.3 s.33
    • /
    • pp.25-32
    • /
    • 2005
  • This paper presents a method for point-based 3D building reconstruction using Lidar data and digital map. The proposed method consists of three processes: extraction of building roof points, identification of roof types, and 3D building reconstruction. After extracting points inside the polygon of building, the ground surface, wall and tree points among the extracted points are removed through the filtering process. The filtered points are then fitted into the flat plane using ODR(Orthogonal Distance Regression) in the first place. If the fitting error is within the predefined threshold, the surface is classified as a flat roof. Otherwise, the surface is fitted and classified into a gable or arch roof through RMSE analysis. Experimental results showed that the proposed method classified successfully three different types of roof and that the fusion of LIDAR data and digital map could be a feasible method of modeling 3D building reconstruction.

  • PDF

GIS Based Analysis of Landslide Factor Effect in Inje Area Using the Theory of Quantification II (수량화 2종법을 이용한 GIS 기반의 인제지역 산사태 영향인자 분석)

  • Kim, Gi-Hong;Lee, Hwan-Gil
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.57-66
    • /
    • 2012
  • Gangwon-do has been suffering extensive landslide dam age, because its geography consists mainly of mountains. Analyzing the related factors is crucial for landslide prediction. We digitized the landslide and non-landslide spots on an aerial photo obtained right after a disaster in Inje, Gangwon-do. Three landslide factors-topographic, forest type, and soil factors-w ere statistically analyzed through GIS overlap analysis between topographic map, forest type map, and soil map. The analysis showed that landslides occurred mainly between the inclination of $20^{\circ}$ and $35^{\circ}$, and needleleaf tree area is more vulnerable to a landslide. About soil properties, an area with shallow effective soil depth and parent material of acidic rock has a greater chance of landslide.

Development of Mean Stand Height Module Using Image-Based Point Cloud and FUSION S/W (영상 기반 3차원 점군과 FUSION S/W 기반의 임분고 분석 모듈 개발)

  • KIM, Kyoung-Min
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.169-185
    • /
    • 2016
  • Recently mean stand height has been added as new attribute to forest type maps, but it is often too costly and time consuming to manually measure 9,100,000 points from countrywide stereo aerial photos. In addition, tree heights are frequently measured around tombs and forest edges, which are poor representations of the interior tree stand. This work proposes an estimation of mean stand height using an image-based point cloud, which was extracted from stereo aerial photo with FUSION S/W. Then, a digital terrain model was created by filtering the DSM point cloud and subtracting the DTM from DSM, resulting in nDSM, which represents object heights (buildings, trees, etc.). The RMSE was calculated to compare differences in tree heights between those observed and extracted from the nDSM. The resulting RMSE of average total plot height was 0.96 m. Individual tree heights of the whole study site area were extracted using the USDA Forest Service's FUSION S/W. Finally, mean stand height was produced by averaging individual tree heights in a stand polygon of the forest type map. In order to automate the mean stand height extraction using photogrammetric methods, a module was developed as an ArcGIS add-in toolbox.

The Development of Major Tree Species Classification Model using Different Satellite Images and Machine Learning in Gwangneung Area (이종센서 위성영상과 머신 러닝을 활용한 광릉지역 주요 수종 분류 모델 개발)

  • Lim, Joongbin;Kim, Kyoung-Min;Kim, Myung-Kil
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1037-1052
    • /
    • 2019
  • We had developed in preceding study a classification model for the Korean pine and Larch with an accuracy of 98 percent using Hyperion and Sentinel-2 satellite images, texture information, and geometric information as the first step for tree species mapping in the inaccessible North Korea. Considering a share of major tree species in North Korea, the classification model needs to be expanded as it has a large share of Oak(29.5%), Pine (12.7%), Fir (8.2%), and as well as Larch (17.5%) and Korean pine (5.8%). In order to classify 5 major tree species, national forest type map of South Korea was used to build 11,039 training and 2,330 validation data. Sentinel-2 data was used to derive spectral information, and PlanetScope data was used to generate texture information. Geometric information was built from SRTM DEM data. As a machine learning algorithm, Random forest was used. As a result, the overall accuracy of classification was 80% with 0.80 kappa statistics. Based on the training data and the classification model constructed through this study, we will extend the application to Mt. Baekdu and North and South Goseong areas to confirm the applicability of tree species classification on the Korean Peninsula.