DOI QR코드

DOI QR Code

Development of Mean Stand Height Module Using Image-Based Point Cloud and FUSION S/W

영상 기반 3차원 점군과 FUSION S/W 기반의 임분고 분석 모듈 개발

  • KIM, Kyoung-Min (Division of Global Forestry, National Institute of Forest Science)
  • 김경민 (국립산림과학원 국제산림연구과)
  • Received : 2016.10.06
  • Accepted : 2016.12.19
  • Published : 2016.12.31

Abstract

Recently mean stand height has been added as new attribute to forest type maps, but it is often too costly and time consuming to manually measure 9,100,000 points from countrywide stereo aerial photos. In addition, tree heights are frequently measured around tombs and forest edges, which are poor representations of the interior tree stand. This work proposes an estimation of mean stand height using an image-based point cloud, which was extracted from stereo aerial photo with FUSION S/W. Then, a digital terrain model was created by filtering the DSM point cloud and subtracting the DTM from DSM, resulting in nDSM, which represents object heights (buildings, trees, etc.). The RMSE was calculated to compare differences in tree heights between those observed and extracted from the nDSM. The resulting RMSE of average total plot height was 0.96 m. Individual tree heights of the whole study site area were extracted using the USDA Forest Service's FUSION S/W. Finally, mean stand height was produced by averaging individual tree heights in a stand polygon of the forest type map. In order to automate the mean stand height extraction using photogrammetric methods, a module was developed as an ArcGIS add-in toolbox.

최근 임상도의 신규 속성으로 임분의 평균 수고인 임분고를 추가하기 시작하였으나 전국 940만개의 포인트를 스테레오 항공사진에서 수동 측정해야 하는 어려움이 예상된다. 아울러, 항공사진에서 수고 측정 시 임연부나 묘지 주변의 수고를 측정하기 쉬워 임분 대표성이 떨어지는 한계를 가지고 있다. 본 연구에서는 고해상도 스테레오 항공사진에서 추출한 영상 기반 3차원 점군과 FUSION S/W를 활용한 임분고 추정 방법을 제안하고 임분고를 자동 분석할 수 있는 모듈을 개발하였다. 스테레오 항공사진에서 수치표면모델 3차원 점군을 추출한 후 지면점 필터링을 거쳐 수치지면모델을 추출하고 이 두 모델을 차분하여 정규수치표면모델을 제작하였다. 정규수치표면모델에서 표본점별 개체목 수관을 육안판독한 후 수관별 최고점을 추출하여 정규수치표면모델 수고를 산출하였다. 표본점에서의 실측 수고와 정규수치표면모델 수고의 RMSE를 분석한 결과 전체 표본점 평균 수고의 RMSE는 0.96m로 나타났다. 대상지 전체의 개체목 수고를 추출하기 위해 FUSION S/W를 이용하여 항공사진의 정규수치표면모델에서 개체목 수고를 자동 추출하고 이를 임상도의 임분 폴리곤 단위로 평균하여 최종 임분고를 산출하였다. 마지막으로 임분고를 보다 손쉽게 분석할 수 있는 환경을 구현하기 위해 임분고 분석 프로세스를 ArcGIS add-in 모듈 형태로 자동화하였다.

Keywords

References

  1. Anttila, P. 2005. Assessment of manual and automated methods for updating stand-level forest inventories based on aerial photography. Ph.D Thesis, University of Joensuu, Joensuu, Finland. p.42.
  2. Asner, G.P., G.V.N. Powell, J. Mascaro, D.D. Knapp, J.K. Clark, J. Jacobson, T. Kennedy-Bowdoin, A. Balaji, G. Paez-Acosta, and E. Victoria. 2010. Highresolution forest carbon stocks and emissions in the Amazon. Proceedings of the National Academy of Sciences. USA. 107(38):16738-16742. https://doi.org/10.1073/pnas.1004875107
  3. Asner, G.P., J. Mascaro, H.C. Muller-Landau, G. Vieilledent, R. Vaudry, M. Rasamoelina, J.S. Hall, and M. van Breugel. 2012. A universal airborne LiDAR approach for tropical forest carbon mapping. Oecologia 168:1147-1160. https://doi.org/10.1007/s00442-011-2165-z
  4. Balenovic , I., A. Seletkovic, R. Pernar, and A. Jazbec. 2015. Estimation of the mean tree height of forest stands by photogrammetric measurement using digital aerial images of high spatial resolution. Annals of Forest Research. 58(1):125-143.
  5. Bohlin, J., J. Wallerman, and J. Fansson. 2012. Forest variable estimation using photogrammetric matching of digital aerial images in combination with a high-resolution DEM. Scandinavian Journal of Forest Research 27(7):692-699. https://doi.org/10.1080/02827581.2012.686625
  6. Bright, B.C., J.A. Hicke, and A.T. Hudak. 2012. Estimating aboveground carbon stocks of a forest affected by moutain pine beetle in Idaho using lidar and multispectral imagery. Remote Sensing of Environment 124:270-281. https://doi.org/10.1016/j.rse.2012.05.016
  7. Debella-Gilo, M., K. Bjorkelo, J. Breidenbach, and J. Rahlf. 2013. Object-based analysis of aerial photogrammetric point cloud and spectral data for land cover mapping. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. ISPRS Hannover Workshop 2013, Hannover, Germany, May. 21-24, 2013. XL-1/W1, pp.63-67.
  8. Edson, C. and M.G. Wing. 2011. Airborne Light Detection and Ranging (LiDAR) for Individual Tree Stem Location, Height, and Biomass Measurements. Remote Sensing 3(11):2494-2528. https://doi.org/10.3390/rs3112494
  9. Englhart, S., J. Jubanski, and F. Siegert. 2013. Quantifying dynamics in tropical peat swamp forest biomass with multitemporal LiDAR datasets. Remote Sensing 5(5):2368-2388. https://doi.org/10.3390/rs5052368
  10. Erdody, T. and L.M. Moskal. 2010. Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sensing of Environment 114(4):725-737. https://doi.org/10.1016/j.rse.2009.11.002
  11. Ferdinent, J. and R.C. Padmanaban. 2013. Development of a methodology to estimate biomass from tree height using airborne digital image. International Journal of Advanced Remote Sensing and GIS 2(1):49-58.
  12. Forest Service. 2015. Action plan of forest type map update project(2015-2019) (산림청. 2015. 임상도 현행화 구축사업 추진계획(2015-2019)).
  13. Ioki, K., S. Tsuyuki, Y. Hirata, M.-H. Phua, W.V.C. Wong, Z.-Y. Ling, H. Saito, and G. Takao. 2014. Estimating aboveground biomass of tropical rainforest of different degradation levels in Northern Borneo using airborne LiDAR. Forest Ecology and Management 328:335-341. https://doi.org/10.1016/j.foreco.2014.06.003
  14. Jamstedt, J., A. Pekkarinen, S. Tuominen, C. Ginzler, M. Holopainen, and R. Viitala. 2012. Forest variable estimation using a high-resolution digital surface model. ISPRS Journal of Photogrammetry and Remote Sensing 74:78-84. https://doi.org/10.1016/j.isprsjprs.2012.08.006
  15. Ke, Y. and I.J. Quackenbush. 2011. A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. International Journal of Remote Sensing 32(17):4725-4747. https://doi.org/10.1080/01431161.2010.494184
  16. McGaughey, R.J. 2015. FUSION/LDV : Software for LiDAR data analysis and visualization. United States Department of Agriculture, Forest Service, Pacific Northwest Research Station, Seattle, W.A., USA. p.175.
  17. Meyer, P., K. Staenz, and K.I. Itten. 1996. Semi-automated procedures for tree species identification in high spatial resolution data from digitized colour infrared-aerial photography. ISPRS Journal of Photogrammetry and Remote Sensing 51(1):5-16. https://doi.org/10.1016/0924-2716(96)00003-2
  18. Morgan, J.L., S.E. Gergel, and N.C. Coops. 2010. Aerial photography: A rapidly evolving tool for ecological management. BioScience 60(1):47-59. https://doi.org/10.1525/bio.2010.60.1.9
  19. Mun, G.S., K.M. Kim, and C.M. Kim. 2014. A Comparative study of point clould density for stand height modeling using digital aerial photo. Proceedings of the KSRS Fall Conference 2014. pp.156-159 (문건수, 김경민, 김철민. 2014. 디지털 항공사진 기반 임분고 모델링을 위한 포인트 클라우드 점밀도 비교 연구. 2014 대한원격탐사학회 추계학술발표논문 초록집. 156-159쪽).
  20. NGI(National Geographic Information Institute). 2012. Airborne laser survey regulations (국토지리정보원. 2012. 항공레이저 측량 작업규정(고시 제2012-1669호)).
  21. Ota, T., M. Ogawa, K. Shimizu, T. Kajisa, N. Mizoue, S. Yoshida, G. Takao, Y. Hirata, N. Furuya, T. Sano, H. Sokh, V. Ma, J. Toriyama, Y. Mouda, Hi. Saito, Y. Kiyono, So. Chana, and N. Ket. 2015. Aboveground biomass estimation using structure from motion approach with aerial photographs in a seasonal tropical forest. Forests 6(11):3882-3898. https://doi.org/10.3390/f6113882
  22. Park, J.W., H.T. Choi, and S.W. Cho. 2016. A study on the effects of airborne LiDAR data-based DEM-generating techniques on the quality of the final products for forest areas-focusing on GroundFilter and GridsurfaceCreate in FUSION Software-. Journal of the Korean Association of Geographic Information Studies 19(1):154-166 (박주원, 최형태, 조승완. 2016. 항공 LiDAR 자료기반 DEM 생성기법의 산림지역 최종산출물 품질에 미치는 영향에 관한 연구-FUSION Software 의 GroundFilter 및 GridsurfaceCreate 알고리즘을 중심으로-. 한국지리정보학회지 19(1): 154-166). https://doi.org/10.11108/kagis.2016.19.1.154
  23. Pflugmacher, D., W.B. Cohen, R.E. Kennedy, and Z. Yang. 2014. Using landsatderived disturbance and recovery history and LiDAR to map forest biomass dynamics. Remote sensing of Environment 151:124-137. https://doi.org/10.1016/j.rse.2013.05.033
  24. Pitt, D.G., M. Woods, and M. Penner. 2014. A comparison of point clouds derived from stereo imagery and airborne laser scanning for the area-based estimation of forest inventory attributes in Boreal Ontario. Canadian Journal of Remote Sensing 40(3):214-232. https://doi.org/10.1080/07038992.2014.958420
  25. Rahlf, J., J. Breidenbach, S. Solberg, E. Naesset, and R. Astrup. 2014. Comparison of four types of 3D data for timber volume estimation. Remote Sensing of Environment 155:325-333. https://doi.org/10.1016/j.rse.2014.08.036
  26. Rahlf, J., J. Breidenbach, S. Solberg, and R. Astrup. 2015. Forest parameter prediction using an image-based point cloud: a comparison of semi-ITC with ABA. Forests 6:4059-4071. https://doi.org/10.3390/f6114059
  27. Stephens, P.R., M.O. Kimberley, P.N. Beets, T.S.H. Paul, N. Searles, A. Bell, C. Brack, and J. Broadley. 2012. Airborne scanning LiDAR in a double sampling forest carbon inventory. Remote Sensing of Environment 117:348-357. https://doi.org/10.1016/j.rse.2011.10.009
  28. Stepper, C., C. Straub, and H. Pretzsch. 2015a. Assessing height changes in highly structured forest using regularly acquired aerial image data. Forestry 88:304-316. https://doi.org/10.1093/forestry/cpu050
  29. Stepper, C., C. Straub, and H. Pretzsch. 2015b. Using semi-global matching point clouds to estimate growing stock at the plot and stand levels: Application for a broadleaf-dominated forest in central Europe. Canadian Journal of Forest Research 45(1):111-123. https://doi.org/10.1139/cjfr-2014-0297
  30. St-Onge, B. and N. Achaichia. 2001. Measuring forest canopy height using a combination of lidar and aerial photography data. International Archives of Photogrammetry and Remote Sensing, Annapolis, MD, Oct. 22-24, 2001. Vol. XXXIV-3/W4, pp.131-137.
  31. St-Onge, B., F.-A. Audet, and J. Begin. 2015. Characterizing the height structure and composition of a boreal forest using an individual tree crown approach applied to photogrammetric point clouds. Forests 6(11):3899-3922. https://doi.org/10.3390/f6113899
  32. Straub, C., C. Stepper, R. Seitz, and L.T. Waser. 2013. Potential of UltraCamX stereo images for estimating timber volume and basal area at the plot level in mixed European forests. Canadian Journal of Forest Research 43(8):731-741. https://doi.org/10.1139/cjfr-2013-0125
  33. Wang, Z. and R. Boesch. 2007. Color-and texture-based image segmentation for improved forest delineation. IEEE Transactions on Geoscience and Remote Sensing 45(10):3055-3062. https://doi.org/10.1109/TGRS.2007.896283
  34. Waser, L.T., E. baltsavias, K. Ecker, H. Eisenbeiss, E. Feldmeyer-Christe, C. Ginzler, M. Küchler, and L. Zhang. 2008a. Assessing changes of forest area and shrub encroachment in a mine ecosystem using digital surface models and aerial images. Remote Sensing of Environment 112(5):1956-1968. https://doi.org/10.1016/j.rse.2007.09.015
  35. Waser, L.T., E. Baltsavias, K. Ecker, H. Eisenbeiss, C. Ginzler, M. Küchler, P. Thee, and L. Zhang. 2008b. Highresolution digital surface models(DSMs) for modelling fractional shrub/tree cover in a mine environment. International Journal of Remote Sensing 29(5):1261-1276. https://doi.org/10.1080/01431160701736422
  36. Waser, L.T., C. Fischer, Z. Wang, and C. Ginzler. 2015. Wall-to Wall Forest Mapping Based on Digital Surface Models from Image-Based Point Clouds and a NFI Forest Definition. Forests 6(12):4510-4528. https://doi.org/10.3390/f6124386
  37. White, J.C., M.A. Wulder, M. Vastaranta, N.C. Coops, D. Pitt, and M. Woods. 2013. The Utility of Image-Based Point Clouds for Forest Inventory: A Comparison with Airborne Laser Scanning. Forests. 4(3):518-536. https://doi.org/10.3390/f4030518