Vegetation classes, especially grass and tree classes, are often confused in classification when conventional spectral pattern recognition techniques are used to classify urban areas. This paper reports on a study to improve the classification results by using an automated process of considering height information in separating urban vegetation classes, specifically tree and grass, using three-band, high-spatial resolution, digital aerial imagery. Height information was derived photogrammetrically from stereo pair imagery using cross correlation image matching to estimate differential parallax for vegetation pixels. A threshold value of differential parallax was used to assess whether the original class was correct. The average increase in overall accuracy for three test stereo pairs was $7.8\%$, and detailed examination showed that pixels reclassified as grass improved the overall accuracy more than pixels reclassified as tree. Visual examination and statistical accuracy assessment of four test areas showed improvement in vegetation classification with the increase in accuracy ranging from $3.7\%\;to\;18.1\%$. Vegetation classification can, in fact, be improved by adding height information to the classification procedure.
In general, lecture evaluation has been used in most universities as an important criterion to evaluate quality of education. This study is exploratory research on the predictors that determine lecture evaluation in college of engineering to give practical implications for improvement of engineering education. For the exploration of predictors of lecture evaluation, the data of lecture evaluation in A College of Engineering located in the metropolitan area was used, and Decision Tree Analysis was utilized as an analysis method. As a result, the characteristics of students turned out to be the most distinct predictor comparing with those of course and instructor at lecture evaluation in college of engineering. That is, as various elements other than teaching competency influence lecture evaluation in college of engineering, it is necessary to be more careful in evaluating quality of lecture or teaching competence. Thus, a follow-up study should be conducted to adjust the influence by the predictors that instructors can hardly control.
Machine learning (ML) models based on artificial neural network (ANN) and decision tree (DT) were developed for estimation of axial capacity of concrete columns reinforced with fiber reinforced polymer (FRP) bars. Between the design codes, the Canadian code provides better formulation compared to the Australian or American code. For empirical models based on elastic modulus of FRP, Hadhood et al. (2017) model performed best. Whereas for empirical models based on tensile strength of FRP, as well as all empirical models, Raza et al. (2021) was adjudged superior. However, compared to the empirical models, all ML models exhibited superior performance according to all five performance metrics considered. The performance of ANN and DT models were comparable in general. Under the present setup, inclusion of the transverse reinforcement information did not improve the accuracy of estimation with either ANN or DT. With selective use of inputs, and a much simpler ANN architecture (4-3-1) compared to that reported in literature (Raza et al. 2020: 6-11-11-1), marginal improvement in correlation could be achieved. The metrics for the best model from the study was a correlation of 0.94, absolute errors between 420 kN to 530 kN, and the range being 0.39 to 0.51 for relative errors. Though much superior performance could be obtained using ANN/DT models over empirical models, further work towards improving accuracy of the estimation is indicated before design of FRP reinforced concrete columns using ML may be considered for design codes.
Recently, six sigma has been widely adopted in a variety of industries as a disciplined, data-driven problem solving approach or methodology supported by a handful of powerful statistical tools in order to reduce variation through continuous process improvement. Also, data mining has been widely used to discover unknown knowledge from a large volume of data using various modeling techniques such as neural network, decision tree, regression analysis, etc. This paper proposes a six sigma methodology based on data mining for effectively and efficiently processing massive data in driving six sigma projects. The proposed methodology is applied in the hot stove system which is a major energy-consuming process in a "P" steel company for improvement of heat efficiency through reduction of energy consumption. The results show optimal operation conditions and reduction of the hot stove energy cost by 15%.
Measuring tree's volume is very important input data of various environmental analysis modeling However, It's difficult to use economical and equipment to measure a fragmented small green space in the city. In addition, Trees are sensitive to seasons, so we need new and easier equipment and quantification methods for measuring trees than lidar for high frequency monitoring. In particular, the tree's size in a city affect management costs, ecosystem services, safety, and so need to be managed and informed on the individual tree-based. In this study, we aim to acquire image data with UAV(Unmanned Aerial Vehicle), which can be operated at low cost and frequently, and quickly and easily quantify a single tree using SfM-MVS(Structure from Motion-Multi View Stereo), and we evaluate the impact of reducing number of images on the point density of point clouds generated from SfM-MVS and the quantification of single trees. Also, We used the Watertight model to estimate the volume of a single tree and to shape it into a 3D structure and compare it with the quantification results of 3 different type of 3D models. The results of the analysis show that UAV, SfM-MVS and solid model can quantify and shape a single tree with low cost and high time resolution easily. This study is only for a single tree, Therefore, in order to apply it to a larger scale, it is necessary to follow up research to develop it, such as convergence with various spatial information data, improvement of quantification technique and flight plan for enlarging green space.
The purpose of this study is to produce basic planning criteria required in ecological restoration and improvement works of streams in rural area through the application of stream assessment methods (water quality, soil environment, and ecological function assessment) at 6 study sites of Han River basin. The investigation results were as followings; 1) There were the evaluation items like a manure use, salt degree, river peripheral tree, which did not fitted to apply to domestic streams, in the SVAP (Stream Visual Assessment Protocol) and NRCS Riparian Assessment that were evaluation models developed in USDA. The area inhabitants with a little knowledge and education personally seems to utilize the evaluation methods through improvement partly with an aspect that evaluation is slightly easy. 2) From the stream assessment results, the construction of diverse pools, large woody debris and isolated backwater pool are needed to improve a few of problems observed at the mostly study sites. The result of NRCS Riparian Assessment showed that the improvement of stream bank vegetative communities is needed by planting tree with deep-binding root masses, and managing of noxious weeds and exotic undesirable plants. 3) Summing up, the assessment results showed that the assessment scores were higher at upstream than downstream, the stream with totally maintenance than that with partly maintenance, the stream with slope bank than that with vertical bank, and the stream with a flood plain than that without a flood plain. So, the direction of stream maintenance projects must be set by consideration of those results.
In recent years, many people in the manufacturing field have been making efforts to increase efficiency while analyzing manufacturing data generated in the process according to the development of ICT technology. In this study, we propose a data mining based manufacturing process using decision tree algorithm (CHAID) as part of a smart factory. We used 432 sensor data from actual manufacturing plant collected for about 5 months to find out the variables that show a significant difference between the stable process period with low defect rate and the unstable process period with high defect rate. We set the range of the stable value of the variable to determine whether the selected final variable actually has an effect on the defect rate improvement. In addition, we measured the effect of the defect rate improvement by adjusting the process set-point so that the sensor did not deviate from the stable value range in the 14 day process. Through this, we expect to be able to provide empirical guidelines to improve the defect rate by utilizing and analyzing the process sensor data generated in the manufacturing industry.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.249-252
/
2007
센서 네트워크에서의 에너지 효율적인 통신을 위한 infrastructure를 제공하고자 가상 백본(Virtu Backbone) 개념이 등장했다. 최근에는 트리 구조를 이용하여 가장 백본을 구성한 EVBT (Energy-aware Virtual Backbone Tree)가 제안되었다. 본 논문에서는 EVBT의 문제점을 개선한 m-EVBT(modified-EVBT) 생성 알고리즘에 대해 다룬다. EVBT와 달리 m-EVBT 생성 알고리즘은 백본 트리에 속하지 않은 센서 노드들의 업스트림 링크의 선정에 물리적 거리가 아닌 에너지 소모량 청보를 이용한다. 이 정보는 백본 트리를 만들 때 이용되는 ECR(EVBT Construction Request) 패킷에 포함되어 전송된다. 시뮬레이션을 통해 m-EVBT는 EVBT에 비해 데이터 전송시 에너지를 절약하고, 백본 트리 구축에 드는 추가적인 비용도 작다는 것을 확인할 수 있었다.
The Purpose of this paper is to analysis on consumer's purchasing behavior and intention of local food. To analysis consumer's purchasing behavior, a series of homemaker surveys were conducted. The sample size of the survey is 416 respectively. As a survey result, consumer's purchasing behavior shows that purchasing ratio of local food and buying place is various type. By decision tree model analysis showed that consumer's purchasing intention is enough to establishing local food system in region. Therefore, strategies for regional consumption are needed expression of the place city and county of origin, diversification of purchasing item and buying area, and sustainable improvement for safety and trust on local food.
JSTS:Journal of Semiconductor Technology and Science
/
v.15
no.1
/
pp.150-153
/
2015
An energy-efficient 64-bit prefix adder is proposed for micro-server processors based on both semidynamic and bypassing structures. Prefix adders consist of three main stages i.e. propagate-generate (PG) stage, carry merge (CM) tree, and sum generators. In this architecture, the PG and CM stages consume most of the power because these are based on domino circuits. This letter proposes a semidynamic PG stage for its energy-efficiency. In addition, we adopt the bypassing structure on the CM tree to reduce its switching activity. Experimental results show 19.1% improvement of energy efficiency from prior art.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.