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Abstract : Vegetation classes, especially grass and tree classes, are often confused in classification when

conventional spectral pattern recognition techniques are used to classify urban areas. This paper reports on
a study to improve the classification results by using an automated process of considering height information
in separating urban vegetation classes, specifically tree and grass, using three-band, high-spatial resolution,
digital aerial imagery. Height information was derived photogrammetrically from stereo pair imagery using
cross correlation image matching to estimate differential parallax for vegetation pixels. A threshold value of
differential parallax was used to assess whether the original class was correct. The average increase in

overall accuracy for three test stereo pairs was 7.8 %, and detailed examination showed that pixels

reclassified as grass improved the overall accuracy more than pixels reclassified as tree. Visual examination
and statistical accuracy assessment of four test areas showed improvement in vegetation classification with
the increase in accuracy ranging from 3.7 % to 18.1 %. Vegetation classification can, in fact, be improved
by adding height information to the classification procedure.

Key Words : High-spatial resolution imagery, stereo pair, image matching, parallax, height information,

urban vegetation classification.

1. Introduction

Conventional spectrally-based land cover
classification has limited success in separating grass and
tree classes in urban vegetation because of spectral
confusion (Myeong et al., 2003; Zhang, 2001).
Therefore, utilizing information other than spectral
reflectivity could improve classification results for these

two classes. One way to improve separation of these two

Received 31 August 2005; Accepted 10 October 2005.

t Corresponding Author: S. Myeong (smyeong@syr.edu)

classes is to use image texture, especially in imagery
with high-spatial resolution. Adding texture information
improved the classification results for color infrared
digital imagery of an urban study area (Ryherd and
Woodcock, 1996; Stefanov et al., 2001; Berberoglu ez
al., 2000; Myeong et al., 2003). However, there still
remains room for improvement in classification between
vegeiation classes; for example, shaded grass often

misclassified as tree cover. Another way to improve

-383-



Korean Journal of Remote Sensing, Vol.21, No.5, 2005

classification is to incorporate vegetation height. The
difference in vegetation height should help to
differentiate trees and grass. Three-dimensional
information can be obtained using LIDAR (LIght
Detection And Ranging) or photogrammetric processing
of stereo imagery. Photogrammetric processing has the
advantage of deriving height information from less
expensive imagery, thereby avoiding the expense of
collecting LIDAR data. Automated processing to obtain
height information is advancing and becoming useful
(Schenk, 1999; Wolf and Dewitt, 2000). To estimate
tree canopy height, stereo digital imagery is processed to
extract differential parallax. Then, this parallax
information can be used to resolve the confusion of the
vegetation classes. This is due to the fact that differential
parallax is greater for high objects (trees) than for low
ones (herbaceous vegetation) (Avery, 1977; Wolf and
Dewitt, 2000; Lillesand and Kiefer, 2000).

This paper reports on the study that classification
of grass and tree classes is improved when height
information is incorporated. The objective of this
study was to test whether misclassified pixels can be
identified and corrected when height of vegetation is
considered. Specifically, this study will:

1. develop a method of automatically generating
local height information from digital, high-spatial
resolution, stereo imagery, and

2. determine the feasibility and potential of using
this local height information to help distinguish

vegetation classes in urban areas.

2. Materials

1) Study Area

Three areas with relatively flat terrain located in
Syracuse, New York, were examined in this study
using three stereo pair images. The average size of

these areas was around 1 km?. However, stereo pair 1

area has relatively hilly terrain compared to other two
areas. The study areas were selected to encompass
diverse land use types such as residential areas,
cemeteries or parks to include enough area of trees
and grass. In addition, four test areas were selected
from these three stereo pairs for detailed accuracy

assessment and visual inspection.

2) Imagery

Digital high-spatial resolution stereo pair images
were used for this study (Emerge, 2003). The
imagery was acquired on July 13, 1999, using a
modified Kodak DCS 460 camera, using three
different spectral bands (near infrared, red, and
green). The imagery was collected with about 60 %
overlap to provide full stereo capability for three-
dimensional analysis.

The classification procedure for the originally
classified imagery incorporated NDVI (Normalized
Difference Vegetation Index) and texture information
of three spectral bands, using the maximum likelihood
decision rule (Myeong ef al., 2003). The confusion
between trees and grass on the classified imagery
revealed a limitation of this method. To test the
concept of using height to improve classification, three
independent sterco pairs were classified using the
original methods to construct three classes: tree, grass,
and non-vegetation. The classified images of these

three stereo pairs were used in this study.

3. Method

The general procedure followed in this study was:
1) match the stereo pair imagery, 2) compute
parallax, 3) estimate differential parallax, 4) correct
misclassified pixels using differential parallax, and 5)
assess the results through visual examination and

statistical evaluation of test areas.
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1) Image Matching

Estimating parallax for a pixel requires finding the
conjugate location for that pixel in stereo images.
Automated determination of conjugate points is
accomplished by statistically matching the gray level
distribution of a subset in one image to its counterpart
in the other image (Wolf and DeWitt, 2000).
Practically, the subset in one image (the “template”)
must be compared with numerous possible regions in
the conjugate image (the “search array”). In other
words, the search array is larger than the template
because parallax and other geometric conditions will
cause variable displacement of the conjugate point in
the second image. However, computation costs and
other practical considerations require that the search
array be centered reasonably close to its conjugate
location and that it be kept to a reasonable size.

As a first approximation to locating the search
array, a simple affine transformation was used to
predict the location of the conjugate point in the search
image. A larger search array is then defined about this
predicted location, and statistical comparison begins.
The size of template was determined as 9 by 9, and
that of search array was determined as around 15 by
15 based on how well each stereo pair matches after
applying affine transformation. Matching occurred by
comparing the gray level distribution of the template
to the equal size patches in the search array. The
comparison was made repetitively as the patch moved
sequentially through every location in the search array.
A common and straightforward method for
performing the comparison is to perform cross
correlation. Cross correlation is a measure of the linear
relationship between two random variables (Kreyszig,
1979). The near infrared band of the imagery was
used for image matching.

At each position inside the search area, the

correlation value between the template and the

corresponding part of the search area was computed.
The coefficient p at pixel (i, j) is computed using the
following equation (Schenk, 1999):

p= 012
g1 - 02

where the 03 is the covariance of image patches 1
and 2, o is the standard deviation of image patch 1
(template), and o is the standard deviation of image
patch 2 (patch in the search array). Correlation ranges
from -1 to +1, with a correlation of 1 meaning a
pertect match, which rarely exists due to image noise
(Wolf and DeWitt, 2000). After computing the
coefficient for every pixel in the search array, the
correlation coefficients were compared and the most
highly correlated pixel was selected as the matched

point between the two images.

2) Parallax Computation

Parallax exists for all pixels imaged in the
overlapping area of stereo images, proportionate to
the elevation of each point. Once a stereo pair is
matched, parallax can be found by measuring the
location of the matched pixel in the first image and
again in the second image. For example, the parallax
for matched point a, P, is defined as:

Pa=xa'xa,

where x,, and x,” are the photo coordinates (along the
axis of the flight line) of the first image and the second
image of the stereo pair respectively. After matching
stereo pairs, the values of x, and x,” are obtained for
each pixel and its conjugate pixel and used to compute
a parallax for that pixel. In the same way, parallax was

computed for every pixel in the study area.

3) Differential Parallax

Differential parallax refers to the change in
parallax value for points at different elevations. For
this study and for objects like trees and buildings,

differential parallax is the difference in parallax
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between the base and top of the object. Therefore,
after finding parallax for every pixel, differential
parallax was computed for each vegetation class as an
indicator of its height. However, automating this
process required a method for estimating the parallax
value for the base and top of objects.

This automation was implemented by finding a
reasonable minimum parallax within a local window
defined for each vegetation pixel. This local
minimum value was assumed to represent the
parallax of the ground. Then, this value was
subtracted from the parallax of the target pixel as a
means to estimate differential parallax.

Before finding the differential parallax, the majority
class was identified first. An 11 by 11 window was
used for this process after testing with diverse window
sizes and also considering the canopy size of trees in
the study area. Then, the local minimum parallax was
found. Through empirical observation and
experimental trials, it was determined that a different
local window was more appropriate for tree pixels
than for grass pixels. When the majority class within a
local window was tree, a 21 by 21 window was used
to find the minimum parallax value. A 21 by 21
window was large enough to include the canopy of a
typical large urban tree or clump of trees and would
include pixels near the edge of the crown or in a gap
between crowns. When the majority class type was
grass, a 5 by 5 window was used to find the minimum
parallax. This smaller window helped to avoid noise
that often exists in the grass class because grass is
generally very homogeneous in terms of image values.
This homogeneity limited the ability to find clear
match points using cross correlation, making the
parallax results incorrect and causing the local

minimum to be unreasonably low.

4) Reclassification of the Imagery

The differential parallax layer was registered to the

classified image layer and a model was developed to
search pixels that were likely to have been
misclassified. For pixels with correlation coefficients
above 0.82, the model considered the differential
parallax value associated with the pixel. These
corrections were made only when the correlation values
from matching were higher than 0.82 because low
correlation values generally indicate pixels that are not
correctly matched points (Wolf and DeWitt, 2000). The
model looked for grass class pixels that had differential
parallax higher than a threshold (1.8 pixels), and then
changed the class of these pixels to be tree. Pixels
labeled as tree but with differential parallax lower than
the threshold were corrected to be grass. All threshold
values were determined through experimental trials.

5) Accuracy Assessment

In this study, accuracy assessment was employed
at three stages. The first accuracy assessment was
performed to provide general information about
overall accuracy for classification of the overlapping
area of the three stereo pairs. A stratified random
sample of 50 reference sampling points was selected
in both the tree and grass classes (based on the
reclassified imagery) to estimate accuracy with
reasonable precision (Stehman, 1999). The same
points were assessed for imagery of both before and
after reclassification for consistency. Because the size
of each stratum was different, the error matrices were
constructed using the proper weighting of data from
each stratum (Stehman, 1995).

The second accuracy assessment was performed to
find detailed information about changes in
classification. The accuracies for changed pixels of
three stereo pairs were tested by sampling only the
pixels that changed after adding height information to
the classification procedure. A total of 200 pixels
(100 pixels for each of tree and grass classes) from

each stereo pair were sampled. The sampling was
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implemented only for pixels that had changed.

The third accuracy assessment was conducted on
four small subset images from the three stereo pairs, to
check the detailed effect of height information on
improving classification. At the second stage, both
visual examination and statistical accuracy assessment
of four test areas were conducted (Figure 1). The
evaluation compared results from before and after
adding the height information. The test areas were
selected to have mostly trees and grass. Statistical
accuracy was assessed by enumerating all the pixels of
vegetation class in the four test areas. The enumeration
was based on polygons for each class that were drawn
separately by photo interpretation and field visits and
then treated as the correct reference map. This
reference map was then compared with the
classification based on the original methods and the
classification modified using height information. Since
revisions were made only to grass and tree pixels,

changes in accuracy occurred only for these classes.

4, Results

The combined accuracies for vegetation classes for
the three stereo pairs increased from 72.99 % to 79
%, from 72.99 % to 81.43 %, and from 76.07 % to
85.05 % respectively after adding height information
to the classification procedure (Table 1). The
accuracy increased by 6.01 %, 8.44 % and 8.98 %
respectively and the average increase was 7.81 %.
The user’s accuracies for both tree and grass classes
and the producer’s accuracy for grass class increased
greatly. The producer’s accuracy for the tree class
decreased slightly in pair 1 but increased a little in the
other two pairs. As reclassification did not affect the
non-vegetation class, the user’s accuracy for the non-
vegetation class remained the same 88 %, 88 % and

94 % respectively and the producer’s accuracy of

non-vegetation class for all three areas were 100 %.

The results of accuracy assessment of three stereo
pairs were encouraging. The overall accuracy
increased, and both producer’s and user’s accuracy
increased after reclassification except producer’s
accuracy of the tree class for stereo pair 1.

The percentages of changed pixels from the grass
class to the tree one are 3.3 %, 3.9 %, and 4.6 %, and
the percentages of changed pixels from tree class to
grass class are 8.7 %, 6 %, and 6.3 % respectively in
the three stereo pair images. The detailed accuracies
for changed pixels after adding height information to
the classification procedure were summarized in
Table 2. While pixels that changed into the tree class
after reclassification show slight improvement, pixels
changed into the grass class show great increase in
accuracy for all the three stereo pairs.

Generally speaking, the correlation coefficients for
the grass class were low while those of the tree class
were high due to the fact that the tree class had
texture and the grass class lacked the matching
features. In this study, grass pixels, with tree shadow
which was likely to be misclassified as the tree class,
had high correlations because the tree shadow plays
the role of the matching features. Therefore, these
pixels were corrected as the right class (Figure 1).
Since many misclassifications occurred on the grass
class with the tree shadow, these helped greatly to
improve the classification accuracy.

For all the four test areas, the classification
improved greatly with the use of height information.
Figure 1 shows visual comparisons of before and after
adding the height information for the four test areas.
Accuracy especially improved for shadow areas and
small grass patches in the middle of forested areas.

Statistical accuracy assessment of the four test
areas revealed that the improvement in classification
varies depending on the characteristics of the test

area. Table 3 shows the statistical results for each of
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3 band input image Originally Classified image Reclassified image

Grass Non-vegetation

Fig. 1. Four test areas that show classification improvement after adding height information in classification.
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Table 1. The overall error matrix of each stereo pair for both before and after reclassification using height information.

Class User’s accuracy Producer’s accuracy Overall
Without Height| With height |Without Height; With height |Without Height| With height

, Tree 7069 v 80.00 % 80.54 % 78.59 %
Pair 1 Grass 76.19 % 78.00 % 65.10 % 79.44 % 7299 % 79.00 %

, Tree 67.24 % 8000% | 6L.10% 64.16 %
Pair 2 Grass 76.19 % 82.00 % 80.70 % 91.06 % 7299 % 81.43 %

. Tree 7451 % 8400% | 7580 % 8447 %
Pair 3 Grass 7755% 86.00 % 76.33 % 85.57 % 7607 % 85.05 %

Table 2. Summary of classification results of 100 sampled
pixels from each vegetation class for three stereo
pairs. Sampling was based on the changed pixels
after adding height information. Table input unit is
number of correctly classified pixels out of 100
sampled pixels in each class.

class demonstrated greater improvement than pixels
reclassified as the tree class (Table 2). However, this
trend was not completely reflected on the overall
accuracy assessment because the percentage of
changed pixels is small. The reason why pair 1

presented lower improvement is potentially because

Stereo Reclassified vegetation class | Tree + Grass ] . . ] )
pair Grass — Tree| Tree — Grass| Correct pixels of the difficulty in image matching due to its hilly
1 5 68 120 terrain compared to other pairs (Table 2).
2 61 72 133 It is hard to generalize the trend of classification
3 63 76 139 improvement because the amount of classification
Average (%) 58.2 % 72 % 65.1 %

the test areas. Although the specific producer’s
accuracy and the user’s accuracy did not always
increase, the overall accuracy of all four test areas

always increased.

5. Discussion and Conclusion

This study tested the potential for improving
classification by adding the height information
extracted photogrammetrically from digital stereo
imagery. The results confirmed the potential of
incorporating this type of information in improving
image classification of urban areas.

Adding height information improved vegetation
classification in terms of accuracy, especially, the
user’s accuracy of the tree class increased greatly

(Table 1). In this study, pixels reclassified as the grass

improvement varies with the test area. However, it is
clear that considering height information and
correlation during the classification process improves
accuracy noticeable even by visual inspection. The
results of four test areas revealed that classification
improvement occurred especially on the grass pixels
in the tree shadow area and on the tree pixels that
included areas with low texture. Generally, the
greatest improvements occurred in the grass class that
had been misclassified as the tree class because they
were in the shadow of tree. Also, most trees were
rendered more correctly in the classified result and the
grass class usually showed an appropriate revision to a
more homogeneous condition. Finally, some areas
that were clusters of trees showed improvement by
better revealing crowns and gaps in the tree canopy.
Although this study showed that adding height
information could improve the classification results,
there are still several unsolved problems. Imperfect

image matching could be the main problem, which in
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Table 3. Accuracy assessment of the four test areas in Fig. 1. The first error matrix is before adding height information and the

second one is after adding height information.

Test area 1
Reference
Class Name Without Height With Height
Tree Grass User’s Accuracy Tree Grass User’s Accuracy
Tree 0.16 0.14 52.3 % 0.19 0.12 61.0 %
Map Grass 0.06 0.64 914 % 0.02 0.66 96.7 %
Producer’s Overall Overall
Accuracy 71.8 % 82.0 % 79.8 % B 89.6 % 84.3 % 85.4 %
Test area 2
Reference
Class Name Without Height B With Height
Tree Grass User’s Accuracy Tree Grass User’s Accuracy
Tree 0.23 0.30 43.3 % 0.20 0.09 67.0 %
Map Grass 0.01 0.46 98.6 % 0.04 0.67 94.6 %
Producer’s Overall Overall
Accuracy 96.1 % 60.6 % 69.1 % 83.9% 88.2 % 87.2 %
Test area 3
Reference
Class Name Without Height With Height
Tree Grass User’s Accuracy Tree Grass [ User’s Accuracy
Tree 0.39 0.23 63.1 % 0.37 0.10 78.9 %
Map Grass 0.03 0.35 91.8 % 0.06 048 89.3 %
Producer’s Overall Overall
Accuracy 92.8 % 59.9 % 73.9 % 86.6 % 82.9 % 84.5 %
Test area 4
Reference
Class Name Without Height With Height
Tree Grass User’s Accuracy Tree Grass User’s Accuracy
Tree 0.15 0.08 66.0 % 0.13 0.02 86.1 %
Grass 0.05 0.72 93.5 % 0.07 0.77 91.5 %
Map T Broducer's Overall Overall
Accuracy 75.5 % 90.0 % 87.0 % 64.8% 97.3 % 90.7 %

turn presents incorrect information for parallax. This
study was based on the cross correlation method,
which is a simple and widely used algorithm for
image matching. This method works well when
geometrical and radiometric distortions are small.

However, repetitive patterns can make it difficult to

find the correct conjugated pixels. Also if the
matching entity is not unique enough, ambiguity
occurs. Inaccurate matching can result from the
difference of spectral and view angles between the
first image and the second image and geometrical and

radiometric distortions (Gruen, 1985).
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The correlation coefficient, which is very
important in interpreting the result of image
matching, also has limitations. The main problem
with this approach is that the highest correlation
factor does not always indicate a true match (Toth
and Krunpnik, 1994). Pixels located at distinct
features demonstrate high correlations, but pixels in
homogeneous areas such as grass fields result in low
correlations. Those pixels often turned out to have
incorrectly matched data. This trouble with low
correlation is likely due to repetitive patterns and lack
of distinct matching features. Therefore, pixels with
low correlations should not be used for image
reclassification. To avoid this problem, this study
used threshold values and small local window sizes
for differential parallax computation.

Further research might use other matching
methods such as least squares or feature-based
approaches to improve the matching results. Another
alternative way to improve the results is multiband
image matching. It has been reported that image
matching techniques applied on multiband images
provide higher accuracies (Gruen and Baltsavias,
1988; Heipke, 1992; Rosenholm, 1987). With multiband
image maltching, the accuracy of parallax would be
higher than that obtained from single band imagery,
thus improving the elevation and positional
accuracies of mapped features (Saleh and Scarpace,
1995). Therefore, multiband image matching with
various image matching strategies deserves more
attention than that it has received.

This study used the affine fransformation to make
the programming simple while locating search areas
in the conjugate images. Methods that use epipolar
geometry or projective transformation should
enhance the capability or improve processing
efficiency or both. Therefore, further study may well
experiment with more sophisticated methods for

defining search areas.

The exploratory nature of this project dictated the
use of simplest methods to derive height information.
The goal was to evaluate the potential of utilizing
height information before devoting substantial effort
in a more robust implementation. If height
information improved classification results with these
straightforward approaches, it should be even more
helpful with more accurate methods. The results are
encouraging, providing evidence that automated
generation of local height information from digital
stereo imagery is possible. Furthermore, height and
related information such as correlation improve
classification of urban vegetation. Further research
should be conducted using other sources of acquiring
three-dimensional information techniques for a wide
variety of land cover areas.

This study found that the photogrammetric
approach using sterco imagery is a viable alternative
method to extract height information. This study also
proved that vegetation classification can be improved
by adding height information to the classification
procedure. The overall accuracy of all the test areas

increased.
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