• Title/Summary/Keyword: transport and diffusion

Search Result 732, Processing Time 0.034 seconds

Development and Validation of Numerical Program for Predicting Electrokinetic and Dielectrophoretic Phenomena in a Microchannel (미소채널 내 전기역학 및 유전영동 현상 해석을 위한 수치 프로그램 개발 및 검증)

  • Kwon, Jae-Sung;Maeng, Joo-Sung;Song, Simon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.4
    • /
    • pp.320-329
    • /
    • 2007
  • Electrokinesis and dielectrophoresis are important transport phenomena produced by external electric field applied to a microchannel containing a conductive fluid. We developed a CFD code to predict electrokinetic and dielectrophoretic flows in a microchannel with a uniform circular post array. Using the code, we calculated particle velocities driven by electrokinesis and dielectrophoresis, and conducted Monte Carlo simulations to visualize the particle motions. The code was validated by comparing the results with those from previous studies in literature. At a low electric field, electrokinesis and diffusion is the dominant transport mechanism. At a moderate electric field, dielectrophoresis is balanced with electrokinesis and diffusion, resulting in flowing filaments of particles in the microchannels. However, dielectrophoresis overwhelms the flow at a high electric field and traps particles locally. These results provide useful insight for optimizing design parameters of a microfluidic chip for biochemical analysis, especially for development of on-chip sample pretreatment techniques using electrokinetic and dielectrophoretic effects.

A study on the electron transport coefficients in $GeH_4$ gas ($GeH_4$기체의 전자수송계수에 관한 연구)

  • Ryu, Sun-Mi;Jeon, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1404_1405
    • /
    • 2009
  • For quantitative understanding of gas discharge phenomena, we should know electron collision cross section. $GeH_4$ is used in many applications with $Si_2H_6$ gas, such as amorphous alloy, a thin film of silicon and solar cell. Therefore, we understand the electron transport characteristics and analysed the electron transport coefficients, the electron drift velocity W, the longitudinal and transverse diffusion coefficient $ND_L$ and $ND_T$, and the ionization coefficient $\alpha$/N in $GeH_4$gas over the E/N range from 0.01 to 1000 Td by two-term approximation of the Boltzmann equation.

  • PDF

Non-equilibrium Molecular Dynamics Simulations of Thermal Transport Coefficients of Liquid Water

  • Song Hi Lee;Gyeong Keun Moon;Sang Gu Choi
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.3
    • /
    • pp.315-322
    • /
    • 1991
  • In a recent $paper^1$ we reported equilibrium (EMD) and non-equilibrium (NEMD) molecular dynamics simulations of liquid argon using the Green-Kubo relations and NEMD algorithms to calculate the thermal transport coefficients-the self-diffusion coefficient, shear viscosity, and thermal conductivity. The overall agreement with experimental data is quite good. In this paper the same technique is applied to calculate the thermal transport coefficients of liquid water at 298.15 K and 1 atm using TIP4P model for the interaction between water molecules. The EMD results show difficulty to apply the Green-Kubo relations since the time-correlation functions of liquid water are oscillating and not decaying rapidly enough except the velocity auto-correlation function. The NEMD results are found to be within approximately ${\pm}$30-40% error bars, which makes it possible to apply the NEMD technique to other molecular liquids.

Effect of Morphology on Electron Transport in Dye-Sensitized Nanostructured $TiO_2$ Films

  • Park, Nam-Gyu;Jao van de Lagemaat;Arthur J. Frank
    • Journal of Photoscience
    • /
    • v.10 no.2
    • /
    • pp.199-202
    • /
    • 2003
  • The relationship between the morphology of nanostructured TiO$_2$ films and the photo-injected electron transport has been investigated using intensity-modulated photocurrent spectroscopy (IMPS). For this purpose, three different TiO$_2$ films with 5 ${\mu}{\textrm}{m}$ thickness are prepared: The rutile TiO$_2$ film with 500 nm-sized cluster-like spherical bundles composed of the individual needles (Tl), the rutile TiO$_2$ film made up of non-oriented, homogeneously distributed rod-shaped particles having a dimension of approximately 20${\times}$80 nm (T2), and the anatase TiO$_2$ film with 20 nm-sized spherically shaped particles (T3). Cross sectional scanning electron micrographs show that all of the TiO$_2$films have a quite different particle packing density: poorly packed Tl film, loosely packed T2 film and densely packed T3 film. The electron transport is found to be significantly influenced by film morphology. The effective electron diffusion coefficient D$_{eff}$ derived from the IMPS time constant is an order of magnitude lower for T2 than for T3, but the D$_{eff}$ for the Tl sample is much lower than T2. These differences in the rate of electron transport are ascribed to differences in the extent of interparticle connectivity associated with the particle packing density.ity.

  • PDF

Transport Properties of Ar-Kr Mixtures: A Molecular Dynamics Simulation Study

  • Min, Sun-Hong;Son, Chang-Mo;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.10
    • /
    • pp.1689-1696
    • /
    • 2007
  • Equilibrium molecular dynamics (EMD) simulations are used to evaluate the transport coefficients of argonkrypton mixtures at two liquid states (state A: 94.4 K and 1 atm; state B: 135 K and 39.5 atm) via modified Green-Kubo formulas. The composition dependency of the volume at state A obeys close to the linear model for ideal liquid mixture, while that at state B differs from the linear model probably due to the high pressure. The radial distribution functions for the Ar-Kr mixture (x = 2/3) show a mixing effect: the first peak of g11 is higher than that of g(r) for pure Ar and the first peak of g22 is lower than that of g(r) for pure Kr. An exponential model of engineering correlation for diffusion coefficient (D) and shear viscosity (η) is superior to the simple linear model for ideal liquid mixtures. All three components of thermal conductivity (λpm, λtm, and λti) at state A and hence the total thermal conductivity decrease with the increase of x. At state B, the change in λtm is dominant over those in λpm and λti, and hence the total thermal conductivity decrease with the increase of x.

A Sensing of Glucose Solution and Diabetic Serum using Polypyrrole Nanotubules Enzyme Electrode Immobilized Glucose Oxidase (포도당 산화효소를 고정화한 Polypyrrole 나노튜뷸 효소전극의 포도당 용액 및 당뇨병 혈청에 대한 감응특성)

  • Kim, Hyun-Cheol;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.6-10
    • /
    • 2001
  • We synthesized polypyrrole (PPy) nanotubules by oxidative polymerization of the pyrrole monomer on the pore of a polycarbonate membrane. The electrochemical behavior was investigated using cyclic voltammetry and AC impedance. The redox potential was about -0.5 V vs. Ag/AgCl reference electrode, while the potential was about 0 V for electro-synthesized PPy film. It is considered as the backbone grows according to the pore wall. Therefore, it is possible to be arranged regularly. That leads to improvement in the electron hopping. The AC impedance plot gave a hint of betterment of mass transport. PPy nanotubules have improved in mass transport, or diffusion. That is because the diffusion occurs through a thin pore wall of PPy nanotubules. The kinetic parameter of PPy nanotubules enzyme electrode with glucose solution was evaluated. The formal Michaelis constant and maximum current calculated by computer were about 23.8 mmol $dm^{-3}$ and $440\;{\mu}A$ respectively. Obviously, an affinity for the substrate and current response of the PPy nanotubules enzyme electrode are rather good, comparing with that of PPy film. What is more, the enzyme electrode is sensitive to blood sugar of a diabetic serum despite an obstruction of ascorbic acid, oxygen, some protein and/or hormone.

  • PDF

Analytical Investigation of Water Transport

  • Um, Suk-Kee;Lee, Kwan-Soo;Jung, Hye-Mi
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2250-2254
    • /
    • 2007
  • Comprehensive analytical models focusing on the anode water loss, the cathode flooding, water equilibrium, and water management strategy are developed for polymer electrolyte fuel cells. Analytical solutions presented in this study are compared with two-dimensional computational results and shows a good agreement in predicting those critical characteristics of water. General features of water concentration profile as a function of membrane thickness and current density are presented to illustrate the net effect of the back-diffusion of water from the cathode to anode and the water production by the cathode catalytic reaction on water transport over a fuel cell domain. As one of practical applications, the required humidity level of feed streams for full saturation at the channel outlets are investigated as a function of the physical operating condition. These analytical models can provide good understanding on the characteristic water

  • PDF

GPU-accelerated Lattice Boltzmann Simulation for the Prediction of Oil Slick Movement in Ocean Environment (GPU 가속 기술을 이용한 격자 볼츠만법 기반 원유 확산 과정 시뮬레이션)

  • Ha, Sol;Ku, Namkug;Roh, Myung-Il
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.6
    • /
    • pp.399-406
    • /
    • 2013
  • This paper describes a new simulation technique for advection-diffusion phenomena over the sea surface using the lattice Boltzmann method (LBM), capable of predicting oil dispersion from tankers. The LBM is used to solve the pollutant transport problem within the framework of the ocean environment. The sea space is represented by the lattices, where each lattice has the information on oil transportation. Since dispersed oils (i.e., oil droplets) at sea are transported by convection due to waves, buoyancy, and turbulent diffusion, the conservation of mass and many physical oil transport rules were used in the prediction model. Since the LBM is modeled using the uniform lattices and simple rules, it can be easily accelerated by the parallel mechanism, for example, GPU-accelerated method. The proposed model using the LBM is used to simulate a simple pollution event with the oil pollutants of 10,000 kL. The simulation results indicate that the LBM method accelerated with the GPU is 6 times faster than that without the GPU.

Development of 2D Depth-Integrated Hydrodynamic and Transport Model Using a Compact Finite Volume Method (Compact Finite Volume Method를 이용한 수심적분형 흐름 및 이송-확산 모형 개발)

  • Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.473-480
    • /
    • 2012
  • A two-dimensional depth-integrated hydrodynamic and a depth-averaged passive scalar transport models were developed by using a Compact Finite Volume Method (CFVM) which can assure a higher order accuracy. A typical wave current interaction experimental data set was compared with the computed results by the proposed CFVM model, and resonable agreements were observed from the comparisons. One and two dimensional scalar advection tests were conducted, and very close agreements were observed with very little numerical diffusion. Finally, a turbulent mixing simulation was done in an open channel flow, and a reasonable similarity with LES data was observed.

A study on the electron transport coefficients using monte carlo method in argon gas (몬테칼로법을 이용한 Ar기체의 전자수송계수에 관한 연구)

  • 하성철;전병훈
    • Electrical & Electronic Materials
    • /
    • v.8 no.6
    • /
    • pp.685-692
    • /
    • 1995
  • The electron transport coefficients in argon gas is studied over the range of E/N values from 85 to 566 Td by the Monte Carlo method considering the latest cross section data. The result of the Monte Carlo method analysis shows that the value of the electron transport coefficients such as the electron drift velocity, the ratio of the longitudinal and transverse diffusion coefficients to the mobility. It is also found that the electron transport coefficients calculated by the two-term approximation analysis agree well with those by Monte Carlo calculation. The electron energy distributions function were analysed in argon at E/N=283, and 566 Td for a case of the equilibrium region in the mean electron energy. A momentum transfer cross section for the argon atom which was consistent with both of the present electron transport coefficients was derived over the range of mean electron energy from 10.3 to 14.5 eV, also suggested as a set of electron cross section for argon atom. The validity of the results obtained has been confirmed by a Monte Carlo simulation method.

  • PDF