DOI QR코드

DOI QR Code

Development and Validation of Numerical Program for Predicting Electrokinetic and Dielectrophoretic Phenomena in a Microchannel

미소채널 내 전기역학 및 유전영동 현상 해석을 위한 수치 프로그램 개발 및 검증

  • 권재성 (한양대학교 기계기술연구소) ;
  • 맹주성 (한양대학교 기계공학부) ;
  • 송시몬 (한양대학교 기계공학부)
  • Published : 2007.04.01

Abstract

Electrokinesis and dielectrophoresis are important transport phenomena produced by external electric field applied to a microchannel containing a conductive fluid. We developed a CFD code to predict electrokinetic and dielectrophoretic flows in a microchannel with a uniform circular post array. Using the code, we calculated particle velocities driven by electrokinesis and dielectrophoresis, and conducted Monte Carlo simulations to visualize the particle motions. The code was validated by comparing the results with those from previous studies in literature. At a low electric field, electrokinesis and diffusion is the dominant transport mechanism. At a moderate electric field, dielectrophoresis is balanced with electrokinesis and diffusion, resulting in flowing filaments of particles in the microchannels. However, dielectrophoresis overwhelms the flow at a high electric field and traps particles locally. These results provide useful insight for optimizing design parameters of a microfluidic chip for biochemical analysis, especially for development of on-chip sample pretreatment techniques using electrokinetic and dielectrophoretic effects.

Keywords

References

  1. Sanders, G. H. W. and Manz, A., 2000, 'Chip-based Microsystems for Genomic and Proteomic Analysis,' Trends in Analytical Chemistry, Vol. 19, No. 6, pp. 364-378 https://doi.org/10.1016/S0165-9936(00)00011-X
  2. Lichtenberg, J., deRooij, N. F. and Verpoorte, E., 2002, 'Sample Pretreatment on Microfabricated Devices,' Talanta, Vol. 56, pp. 233-266 https://doi.org/10.1016/S0039-9140(01)00593-8
  3. Stephen C. Jacobson, Roland Hergenroder, Lance B. Koutny, J. Michael Ramsey, 'High-Speed Separations on a Microchip,' Anal. Chem., 66, 1114-1118, 1994 https://doi.org/10.1021/ac00079a029
  4. Manz, A., Harrison, J., Verpoorte, E. M. J., Fettinger, J. C., Paulus, A., Ludi, H. and Widmer, H. M., 1992, 'Planar Chips Technology for Miniaturization andIntegration of Separation Techniques into Monitoring Systems,' Journal of Chromatography, Vol. 593, pp.253-258 https://doi.org/10.1016/0021-9673(92)80293-4
  5. Li, D., 2004, Electrokinetics in Microfluidics, Elservier Academic Press, London
  6. Probstein, R. F., 1994, Physicochemical Hydrodynamics: An Introduction, John Wiley & Cons. Inc, New York
  7. Aguilella, V., Belaya, M. and Levadny, V., 1997, 'A Perturbed Electric Double Layer Near a Soft Polar Interface,' Journal of Colloid and Interface Science, Vol. 186, pp. 212-214 https://doi.org/10.1006/jcis.1996.4629
  8. Gu, Y. and Li, D., 2000, 'The Zeta Potential of Glass Surface in Contact with Aqueous Solutions,' Journal of Colloid and Interface Science, Vol. 226, pp. 328-339 https://doi.org/10.1006/jcis.2000.6827
  9. Green, N. G., Ramos, A. and Morgan, H., 2000, 'Ac Electrokinetics: A Survey of Sub-micrometre Particle Dynamics,' Journal of Physics D: Applied Physics, Vol. 33, pp. 632-641 https://doi.org/10.1088/0022-3727/33/6/308
  10. Ermolina, I. and Morgan, H., 2005, 'The Electrokinetic Properties of Latex Particles: Comparison of Electrophoresis and Dielectrophoresis,' Journal of Colloid and Interface Science, Vol. 285, pp. 419-428 https://doi.org/10.1016/j.jcis.2004.11.003
  11. Pohl, H. A., 1978, Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields, Cambridge University Press, London
  12. Jones, T. B., 1995, Electromechanics of Particles, Cambridge University Press, London
  13. Hughes, M. P., Pethig, R. and Wang, X.-B., 1996, 'Dielectrophoretic Forces on Particles in Travelling Electric Fields,' Journal of Physics D: Applied Physics, Vol. 29, pp. 474-482 https://doi.org/10.1088/0022-3727/29/2/029
  14. Green, N. G. and Morgan, H., 1997, 'Dielectrophoretic Investigations of Sub-micrometre Latex Spheres,' Journal of Physics D: Applied Physics, Vol. 30, pp. 2626-2633 https://doi.org/10.1088/0022-3727/30/18/018
  15. Wakizaka, Y., Hakoda, M. and Shiragami, N., 2004, 'Effect of Electrode Geometry on Dielectrophoretic Separation of Cells,' Biochemical Engineering Journal, Vol. 20, pp. 13-19 https://doi.org/10.1016/j.bej.2004.03.002
  16. Cummings, E. B. and Singh, A. K., 2003, 'Dielectrophoresis in Microchips Containing Arrays of Insulating Posts: Theoretical and Experimental Results,' Analytical Chemistry, Vol. 75, pp. 4724-4731 https://doi.org/10.1021/ac0340612
  17. Ikeda, I., Tsukahara, S. and Watarai, H., 2003, 'Effects of Viability and Lectin Protein Binding on Dielectrophoretic Behavior of Single Yeast Cells,' Analytical Sciences, Vol. 19, pp. 27-31 https://doi.org/10.2116/analsci.19.27
  18. Lapizco-Encinas, B. H., Simmons, B. A., Cummings, E. B. and Fintschenko, Y., 2004, 'Dielectrophoretic Concentration and Separation of Live and Dead Bacteria in an Array of Insulators,' Analytical Chemistry, Vol. 76, pp. 1571-1579 https://doi.org/10.1021/ac034804j
  19. Thomson, J. F., Thames, F. C. and Mastin, C. W., 1974, 'Automatic Numerical Generation of Bodyfitted Curvilinear Coordinate System for FieldContaining Any Number of Arbitrary Twodimensional Bodies,' Journal of Computational Physics, Vol. 59, pp. 151-163
  20. Choi, I. K. and Maeng, J. S., 1999, 'Automated Body-Fitted Grid Generation Method with Application to Natural Convection Problem,' Trans. of the KSME(B), Vol. 23, No. 6, pp. 703-712
  21. Cummings, E. B., Griffiths, S. K., Nilson, R. H. and Paul, P. H., 2000, Condition for Similitude between the Fluid Velocity and Electric Field in Electroosmotic Flow,' Analytical Chemistry, Vol. 72, pp. 2526-2532 https://doi.org/10.1021/ac991165x
  22. Press, W. H., Teukolsky, S. A., Vetterling, W. T. and Flannery, B. P., 1992, Numerical Recipes in C, Cambridge University Press, New York
  23. Ermakov, S. V., Jacobson, S. C. and Ramsey, J. M., 1998, 'Computer Simulations of Electrokinetic Transport in Microfabricated Channel Structures,'Analytical Chemistry, Vol. 70, No. 21, pp. 4494-4504 https://doi.org/10.1021/ac980551w
  24. Morrison, F. A., 1970, 'Electrophoresis of a Particle of Arbitrary Shape,' Journal of Colloid and Interface Science, Vol. 34, No. 2, pp. 210-214 https://doi.org/10.1016/0021-9797(70)90171-2
  25. Atramentov, A. and LaValle, S. M., 2002, 'Efficient Nearest Neighbor Searching for Motion Planning,' IEEE International Conference on Robotics and Automation, Vol. 1, pp. 632-637 https://doi.org/10.1109/ROBOT.2002.1013429
  26. Prevost, M., Edwards, M. G. and Blunt, M. J., 2001, 'Streamline Tracing on Curvilinear Structured and Unstructured Grids,' Proc. Society of Petroleum Engineers
  27. Cummings, E. B. and Singh, A. K., 2000, 'Dielectrophoretic Trapping without Embedded Electrodes,' Proc. of the SPIE Symposium on. Micromachining and Microfabrication, Vol. 4177, No. 29, pp. 164-173 https://doi.org/10.1117/12.395653

Cited by

  1. Analysis of Particle Motion in Quadrupole Dielectrophoretic Trap with Emphasis on Its Dynamics Properties vol.38, pp.10, 2014, https://doi.org/10.3795/KSME-B.2014.38.10.845