• Title/Summary/Keyword: transplanting date and density

Search Result 21, Processing Time 0.019 seconds

Effect of Transplanting Dates and Density on Dry Root Yield in Alisma plantago Cultivated after Early Maturing Rice Cropping

  • Kwon, Byung-Sun;Park, Hee-Jin;Shin, Jong-Sub;Lee, Sang-Rae
    • Plant Resources
    • /
    • v.3 no.3
    • /
    • pp.194-199
    • /
    • 2000
  • The result of this experiment which are conducted, to improve the cultivation technology of Alisma plantago, to increase its quantity and to contribute for stable production with Yongiun local group by examining the optimal planting density and transplanting period of double cropping of Alisma plantago in the southern region. The characters of plant height, leaf width and length tend to be reduced as the seeding period is later by the order of the 10th, 20th and 30th of July. The period required for flowering is reduced as the transplanting period is later and dense planting is applied. Plant height, the number of leaves and yield of dry root have much quantity at the dense planting density of 20$\times$ 15cm as they are transplanted later in the 30th of August or the 10th of September, but they are rather less in sparse planting density of 20$\times$25cm or 20$\times$35cm.

  • PDF

Transplanting Date and Planting Density Affect the Growth Characteristics and Seed Yield of Italian Ryegrass (이앙 시기와 재식 밀도에 따른 이탈리안 라이그라스의 생육 및 종실 수량 특성 평가)

  • Yun-Ho Lee;Jeong-Won Kim;Hyeok-Jin Bak;Hyun-Ki Kim;Hyeon-Soo Jang;Dea-Yuk Kim;Jong-Tak Yoon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.68 no.4
    • /
    • pp.438-444
    • /
    • 2023
  • Italian ryegrass (Lolium multiflorum Lam.; IRG) sowing season is delayed due to the autumn rainy season. Therefore, to address this problem, transplanting date and plant density were investigated. Transplant times investigated were October 20th, October 30th, and November 10th and planting densities were 50, 70, and 80 hills per 3.3 m2. The plant height, leaf area index, and plant coverage rate were high in the following order: October 20th, October 30th, and November 10th. There was no significant difference among planting densities. In addition, the number of tillers and dry weight before and after wintering were high on October 20th. In terms of yield components, the number of tillers, dry weight, and seed yield per unit area were higher with the transplanting date of October 20th than with transplanting on November 10th. There was no difference in seed yield between the planting densities of 80 and 70 hills per 3.3 m2. However, seed yield was low at 50 hills per 3.3 m2. In conclusion, the transplanting time for stable seed production is late October, and optimal plant density is 70 and 80 hills per 3.3 m2. A stable interplanting number before wintering will contribute to the seed yield.

Effects of Different Transplanting Dates and Agroclimatic Zones on Quality of Brown Rice and Yield of a Pigmented Rice Variety 'Josaengheugchal' (이앙시기와 농업기후지대의 차이가 조생흑찰의 현미 품질과 수량에 미치는 영향)

  • Lee, Yun-Sang;Lee, Joung-Kwan;Lee, Sang-Young;Yun, Tae;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.spc
    • /
    • pp.9-14
    • /
    • 2008
  • This experiment was carried out to clarify the effect of various transplanting dates and agroclimatic zones on quality of brown rice and yield of a pigmented rice variety ‘Josaengheugchal’. The black density of brown rice in Jecheon (central inland region) showed a slight difference among the transplanting dates, but in Cheongwon (western sobaek inland region) that had increased at the transplanting dates of June 10th to 20th. cyanidin 3-glucoside (C3G) content at the same transplanting date in Jecheon was higher than Cheongwon, and the overall C3G content was increased at the later transplanting dates. The optimum transplanting date estimated by brown rice yields and C3G content was May 11th (491 kg/10a) in Jecheon and June 16th (468 kg/10a) in Cheongwon.

A Comprehensive Study on Growing of Seedlings and Planting Density- as a Measure against Late Transplanting of Paddy Rice (수도 만앙대책으로서의 육묘 및 재식밀도에 관한 종합적 연구)

  • Eun-Woong Lee;Jong-Suk Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.11
    • /
    • pp.1-9
    • /
    • 1972
  • For a measure against late transplanting, this experiment was conducted to investigate a reasonable seeding rate in nursery bed and a proper nursery size. The treatments applied to this experiment are as follows a) seeding rates: 0.2ι, 0.4ι and 0.6ι per 3.3$m^2$ b) nursery sizes. for 10a-field area: 39.6$m^2$, 49.5$m^2$ and 59.4$m^2$ c) transplanting dates: June 5, June 25 and July 15. The seeding date was April 26 and planting density was determined by the number of sound seedlings based on the combination of seeding rate and nursery size. The results may be summarized as follows: 1. In seedlings both increased nursery period and decreased seeding rate showed a remarkable-increase in plant height, number of leaves, dry matter weight and the ratio of dry weight to plant height. But their number of tillers and live leaves did not show such tendency. 2. Delayed transplanting date shortened culm length and panicle length as well as number of days from transplating to heading and it also delayed heading date. On the other hand the transplanting of 80-day seedlings resulted in premature heading. 3. As a result late transplanting reduced number of spikelets per panicle, maturing rate and 1000-grain weight. In the last analysis it linearly reduced grain yield. The decreasing rate of yield by late transplanting was 15.6% in June 25 plot and 41. 3% in July 15 plot, compared with the yield in June 5 plot. Such a remarkable decrease in yield of the extremely late transplanted plot was mainly due to markedly decreasing number of spikelets per panicle and 1000-grain weight. 4. Both increased seeding rate and nursery size gave a rise in number of tillers per unit area as well as number of transplanting hills but gave a fall in culm length and panicle length. 5. Accordingly, though thick seeded - dense planted plot increased number of panicles per unit area, decrease in number of spikelets per panicle and 1000-grain weight made no differences in yield between thick seeded - dense planted plot and thin seeded - sparse planted one. However, the yield in the thick seeded - dense planted plot transplanted on July 15 was reduced owing to the remarkable decrease in maturing rate and 1000-grain weight. 6. We came to the conclusion that as a measure against the extremely late transplanting the suitable seeding rate was 0.4ι per 3.3$m^2$ and the proper nursery size was 59.4$m^2$ for 10a-field area.

  • PDF

Yield and Chemical Component of Grain as Affected by Transplanting Dates in the Colored Rice Varieties (이앙시기에 따른 유색미 품종의 수량 및 성분 변화)

  • 이순계;김현호;이재철;신철우;김창영;변종영;이종철
    • Korean Journal of Plant Resources
    • /
    • v.12 no.2
    • /
    • pp.145-151
    • /
    • 1999
  • This study was conducted to know the influence of transplanting dates on yield and chemical component of colored rice varieties at Taejon area in middle part in Korea. The late transplanting led to late heading in which the latest transplanting on June 18 headed on August 9 in Heugiinjubyeo and on August 24 in Heugnambyeo, respectively, which in the safe latest heading date at Taejon area. The highest yield was attained by middle of June transplanting in Heugjinjubyeo, while that for the Heugnambyeo was transplanting from end of May to beginning of June. The relative optical density(ROD) of the pigment measured at 530 nm was higher in Heugjinjubyeo than that of Heugnambyeo. The late transplanting increased the ROD in Heugnambyeo, while later than May 28 decreased the ROD in Heugjinjubyeo. There was a varietal difference in cation contents such as K, Ca, Mg and Fe. The Contents of the former three was not influenced by different transplanting dates, while the Fe content was increased by early transplanting.

  • PDF

Changes in Variety and Cultural Practices of Rice Since 1962 in Korea (수도품종 및 재배기술의 1962년 이후 변천)

  • Jong-Hoon Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.439-451
    • /
    • 1982
  • In fact, rice cultivation technique from 1962 to 1970 was very slight, but this technique from 1970 to now was remarkably developed in Korea, it was due to development of high fretilizer responsive and lodging resistant variety, Tongil; ie. Ind. ${\times}$ Japonica remote-cross rice variety. The main factors of this development is as follow: Firstly the most farmer (more than 90%) used newly developed seedling growth method; polyethylene film covered protected nursery bed. Secondly date of transplanting (middle or late part. of May) was earlier 10-15days than before 1970. Thirdly new varieties were highly lodging resistant at high fertilizer level $(N-P_2O_5-K_2O:15-9-11 kg/l0a)$. However, this level is 50% increased one than it for Japonica varieties. At forth planting density increased up to 75-80 hills per $3.3m^2$. Added to these factors, farm labor shortage and wage increase due to economic development gave a chance for introduction of transplanting machine to farmer in 1977. It's use increased for 100, 800 ha in 1981. The most of farmers are using herbicides and weed control system dependoing on wood composition has been established and disseminated to farmer.

  • PDF

Changes in Growth and Yield of Different Rice Varieties under Different Planting Densities in Low-Density Transplanting Cultivation (벼 드문모심기 재식밀도에 따른 품종별 생육 및 수량 변이)

  • Yang, SeoYeong;Hwang, WoonHa;Jeong, JaeHyeok;Lee, HyeonSeok;Lee, ChungGeun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.279-288
    • /
    • 2021
  • Low-density transplanting is a cultivation technology that reduces labor and production costs. In this study, the growth and yield of several varieties with different tillering characteristics were analyzed in order to establish an appropriate planting density for low-density transplanting. Varieties with Low-Tillering (LT), Medium-Tillering (MT), and High-Tillering (HT) were planted at a density of 37-80 hills/3.3 m2. As the planting density decreased, the number of tillers per hill increased, but the number of tillers per square meter of hill decreased, especially for the LT variety. Decreasing density extended the tillering stage, which was longest in the LT variety. As the planting density decreased, SPAD(Soil plant analysis development, chlorophyll meter) values just before heading increased while canopy light interception decreased. Such changes were much greater in the LT variety than in the MT and HT varieties. The heading date tended to be delayed by 0-2 days as the planting density decreased, and there was no difference in the length of the period from first heading to full heading. As the number of spikelets per panicle increased, the number of spikelets per square meter did not differ according to the planting density. Decreasing planting density did not affect the grain weight; nevertheless, the yield ultimately decreased because of the decreasing ripening rate. The optimal planting density for stable low-density transplanting cultivation was determined to be over 50 hills/3.3 m2. In addition, these results suggest that LT varieties should be avoided, since these showed large decreases in growth and yield with decreasing planting density.

Optimum Planting Density in Low Fertilizing Culture of Machine Transplanting in Rice (벼 기계이앙 소비재배시 적정 재식밀도 구명)

  • Choi Weon-Young;Moon Sang-Hoon;Park Hong-Kyu;Choi Min-Gyu;Kim Sang-Su;Kim Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.379-385
    • /
    • 2006
  • This experiment was carried out to investigate the optimum planting density in low fertilizing cultivation of machine transplanting in rice field of Honam Agricultural Research Institute, NICS for $2004{\sim}2005$. Sobibyeo which belongs to medium maturing variety and Nampyeongbyeo which belongs to medium-late maturing variety were transplanted on May 30. In this experiment, there was no significant difference in heading date between planting density and nitrogen fertilization rate, and heading dates were August 8 in Sobibyeo, and August 14 in Nampyeongbyeo respectively. In relation to lodging character, lodging Index was high where the nitrogen fertilization rate and planting density were high. As planting density increases, panicle number per $m^{2}$ increased irrespective of nitrogen fertilization rate. When nitrogen was 6 kg/10a, rice yield of Sobibyeo was more where planting density was 90 hill per $3.3m^{2}$, and that of Nampyeongbyeo was more where planting density was 80 hill per $3.3m^{2}$. When nitrogen was 9 kg/10a, rice yield of Sobibyeo was more where planting density was 100 hill per $3.3m^{2}$, and that of Nampyeongbyeo was more where planting density was 110 hill per $3.3m^{2}$. Head rice rate of brown rice was higher when planting density increased, and was higher at 6 kg/10a nitrogen rate than 9 kg/10a nitrogen rate in all varieties.

Optimum Transplanting Date, Fertilizer Application Rate and Planting Density for Upland Cotton Culture after Naked Barley (맥후작 목화 재배 적정이식기, 시비량 및 재식밀도)

  • Kyu-Yong Chung;Bang-Myung Kae;Byeong-Han Choi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.3
    • /
    • pp.217-223
    • /
    • 1992
  • Cotton has been an important fiber crop in Korea for a long time. The objective of the study was to investigate the effects of planting and transplanting dates, transplanting density and fertilizer application rate on seed cotton and lint yields, and gross income for barley-cotton double cropping in southern part of Korea. Transplanting culture of upland cotton cultivar Mokpo 4 on June 10 to 20 produced 80 to 83% more in seed cotton yield and 79 to 82% more in lint yield compared with the yields of direct planted on June 10 just after harvesting naked-barley. Mokpo 4 was better than Suwon 17 and Paymaster for the transplanting culture after barley harvest in double cropping. Optimum fertilizer application rate was N 80-P$_2$O$_{5}$ 78-K$_2$O 106 kg /ha, and optimum transplanting density was 70$\times$20cm for the transplanting culture of upland cotton after barley in double cropping system. The highest total yields 5.03 to 5.09t /ha in barley-cotton double croppings were harvested in barley drill-seeding and cotton transplanting culture on June 10 to 20 compared with seed cotton yield 1.51t /ha of the cotton monoculture planted on May 1. Their gross income also was 40% more than that of the cotton monoculture, and 30% more than the cotton direct seeding just after barley harvest on June 10. Cotton intercropping between barley rows provided 2-11% more in gross income compared with cotton direct seeding after barley harvest on June 10. Of the cotton intercroppings between barley rows, cotton intercropping of one row between the barley rows of 60cm width provided 5 to 9% more in gross income than the other cotton intercroppings between barley rows.s.

  • PDF