• Title/Summary/Keyword: transparent electronics

Search Result 358, Processing Time 0.034 seconds

Highly Conductive and Transparent Electrodes for the Application of AM-OLED Display

  • Ryu, Min-Ki;Kopark, Sang-Hee;Hwang, Chi-Sun;Shin, Jae-Heon;Cheong, Woo-Seok;Cho, Doo-Hee;Yang, Shin-Hyuk;Byun, Chun-Won;Lee, Jeong-Ik;Chung, Sung-Mook;Yoon, Sung-Min;Chu, Hye-Yong;Cho, Kyoung-Ik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.813-815
    • /
    • 2008
  • We prepared highly transparent and conductive Oxide/Metal/Oxide(OMO) multilayer by sputtering and developed wet etching process of OMO with a clear edge shape for the first time. The transmittance and sheet-resistance of the OMO are about 89% and $3.3\;{\Omega}/sq.$, respectively. We adopted OMO as a gate electrode of transparent TFT (TTFT) array and integrated OLED on top of the TTFT to result in high aperture ratio of bottom emission AM-OLED.

  • PDF

Oxide/Organic Hybrid TFTs for Flexible Devices

  • Yang, Shin-Hyuk;Cho, Doo-Hee;KoPark, Sang-Hee;Lee, Jeong-Ik;Cheong, Woo-Seok;Yoon, Sung-Min;Ryu, Min-Ki;Byun, Chun-Won;Kwon, Oh-Sang;Cho, Kyoung-Ik;Chu, Hye-Yong;Hwang, Chi-Sun;Ahn, Taek;Choi, Yoo-Jeong;Yi, Mi-Hye;Jang, Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.393-395
    • /
    • 2009
  • We fabricated oxide and oxide/organic hybrid TFTs on a glass substrate using the photolithography process under $200^{\circ}C$. We adopt the solution processed organic ferroelectric materials of P(VDF-TrFE) and polyimide (KSPI) insulator for 1-T structure memory and flexible device, respectively. All devices have successfully operated and showed the possibility of hybrid TFTs for the application to the flexible electronic devices.

  • PDF

Approach to High Stable Oxide Thin-Film Transistors for Transparent Active Matrix Organic Light Emitting Devices

  • Cheong, Woo-Seok;Lee, Jeong-Min;Jeong, Jae-Kyeong;KoPark, Sang-Hee;Yoon, Sung-Min;Cho, Doo-Hee;Ryu, Min-Ki;Byun, Chun-Won;Yang, Shin-Hyuk;Chung, Sung-Mook;Cho, Kyoung-Ik;Hwang, Chi-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.382-384
    • /
    • 2009
  • In this study, high stable oxide thin-film transistors (TFTs) have been developed by using several approaching techniques, which including a change of the channel composition ratio in multi-component oxide semiconductors, a change of TFT structure with interfacial dielectric layers, a control of interface roughness, a channel-doping method, and so on.

  • PDF

AMOLED Panel Using Transparent Bottom Gate IGZO TFT (Bottom Gate IGZO 박막트랜지스터를 이용한 투명 AMOLED 패널 제작)

  • Cho, D.H.;Yang, S.H.;Byun, C.W.;Shin, J.H.;Lee, J.I.;Park, E.S.;Kwon, O.S.;Hwang, C.S.;Chu, H.Y.;Cho, K.I.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.39-40
    • /
    • 2008
  • We have examined post-annealing and passivation for the transparent bottom gate IGZO TFT having an inverse co-planar structure. The oxygen-vacuum two step annealing enhanced the field effect mobility up to 18 $cm^2$/Vsandthesub-threshold swing down to 0.2V/dec. However, the hysterysis and the bias stability problems could not be solved just by post-annealing. Thus, we have passivated the bottom gate IGZO TFTs with organic and inorganic materials. $Ga_2O_3$, $Al_2O_3$, $SiO_2$ and some polymer materials were effective materials for passivations. The hysterysis and the stability of the TFTs were remarkably improved by the passivations. We have manufactured the AMOLED panel with the transparent bottom gate IGZO TFT array successfully.

  • PDF

Novel Oxide Thin Film Transistors for Transparent AMOLED

  • Cho, Doo-Hee;Yang, Shin-Hyuk;Byun, Chun-Won;Lee, Jeong-Ik;Hwang, Chi-Sun;Kopark, Sang-Hee;Chu, Hye-Yong;Cho, Kyoung-Ik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1101-1104
    • /
    • 2008
  • We have fabricated the transparent TFTs using new oxide material (AZTO: Al-doped zinc tin oxide) as an active layer. The AZTO TFT showed good performance without post-annealing. The electrical characteristics were improved by the post-annealing up to $300^{\circ}C$. The AZTO TFTs exhibited a mobility of $8{\sim}12\;cm^2/Vs$, a sub-threshold swing of 0.2~0.6 V/dec, and an on/off ratio of more than $10^9$.

  • PDF

Challenge to Future Displays: Transparent AM-OLED driven by PEALD grown ZnO TFT

  • Ko Park, Sang-Hee;Hwang, Chi-Sun;Byun, Chun-Won;Ryu, Min-Ki;Lee, Jeong-Ik;Chu, Hye-Yong;Cho, Kyoung-Ik;Chae, Jang-Youl;Han, Se-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1249-1252
    • /
    • 2007
  • We have fabricated 3.5” transparent AM-OLED panel driven by PEALD grown ZnO TFT. The performance of ZnO thin film transistor was improved by adapting top gate structure, protection layer for ZnO from photolithography process, optimizing temperature and plasma power of ZnO growth process. The ZnO-TFT has a mobility of $8.9cm^2/V.s$, a subthreshold swing of 0.95V, and an on/off ratio of $10^7$.

  • PDF

Top gate ZnO-TFT driving AM-OLED fabricated on a plastic substrate

  • Hwang, Chi-Sun;Kopark, Sang-Hee;Byun, Chun-Won;Ryu, Min-Ki;Yang, Shin-Hyuk;Lee, Jeong-Ik;Chung, Sung-Mook;Kim, Gi-Heon;Kang, Seung-Youl;Chu, Hye-Yong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1466-1469
    • /
    • 2008
  • We have fabricated 2.5 inch QQCIF AM-OLED panel driven by ZnO-TFT on a plastic substrate for the first time. The number of photo mask for the whole panel process was 5 and the TFT structure was top gate with active protection layer as a first gate insulator. Optimizing the process for the substrate buffer layer, active layer, ZnO protection layer, and gate insulator was key factor to achieve the TFT performance enough to drive OLED. The ZnO TFT has mobility of $5.4\;cm^2/V.s$, turn on voltage of -6.8 V, sub-threshold swing of 0.39 V/decade, and on/off ratio of $1.7{\times}10^9$. Although whole process temperature is below $150^{\circ}C$ to be suitable for the plastic substrate, performance of ZnO TFT was comparable to that fabricated at higher temperature on the glass.

  • PDF

A Level Shifter Using Aluminum-Doped Zinc Tin Oxide Thin Film Transistors with Negative Threshold Voltages

  • Hwang, Tong-Hun;Yang, Ik-Seok;Kim, Kang-Nam;Cho, Doo-Hee;KoPark, Sang-Hee;Hwang, Chi-Sun;Byun, Chun-Won;Kwon, Oh-Kyong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.464-465
    • /
    • 2009
  • A new level shifter using n-channel aluminum-doped zinc tin oxide (AZTO) thin film transistors (TFTs) was proposed to integrate driving circuits on qVGA panels for mobile display applications. The circuit used positive feedback loop to overcome limitations of circuits designed with oxide TFTs which is depletion mode n-channel TFTs. The measured results shows that the proposed circuit shifts 10 V input voltage to 20 V output voltage and its power consumption is 0.46 mW when the supply voltage is 20 V and the operating frequency is 10 kHz.

  • PDF

Recent Trends in Development of Ag Nanowire-based Transparent Electrodes for Flexible·Stretchable Electronics (유연·신축성 전자 소자 개발을 위한 은 나노와이어 기반 투명전극 기술)

  • Kim, Dae-Gon;Kim, Youngmin;Kim, Jong-Woong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.7-14
    • /
    • 2015
  • Recently, advances in nano-material researches have opened the door for various transparent conductive materials, which include carbon nanotube, graphene, Ag and Cu nanowire, and printable metal grids. Among them, Ag nanowires are particularly interesting to synthesize because bulk Ag exhibits the highest electrical conductivity among all metals. Here we reviewed recently-published research works introducing various devices from organic light emitting diode to tactile sensing devices, all of which are employing AgNW for a conducting material. They proposed methods to enhance the stretchability and reversibility of the transparent electrodes, and apply them to make various flexible and stretchable electronics. It is expected that Ag nanowires are applicable to a wide range of high-performance, low-cost, stretchable electronic devices.

Transparent dielectric layer having color-filter function for PDP

  • Lee, Sung-Wook;Kwon, Tae-In;Lee, Yoon-Kwan;Ryu, Byung-Gil;Yoo, Eun-Ho;Park, Myung-Ho
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.632-634
    • /
    • 2002
  • Transparent dielectric layer having color-filter function in front panel for PDP(Plasma Display Panel) was successfully fabricated and characterized. Transparent dielectric layer in front panel was made of glass based on $PbO-SiO_2-B_2O_3$ ternary system. The change of properties with content variation of oxide colorants in transparent dielectric layer having color-filter function was systematically accessed. It was demonstrated that the optimized content of oxide colorants to parent glass could greatly increase up contrast ratio and color temperature without significantly degrading luminance.

  • PDF