A nanofiber was fabricated with carbon nanotubes for transparent electrodes. It was prepared with a composite solution of bio-molecules polycaprolactone (PCL) and multiwalled carbon nanotubes (MWCNTs) by electrospinning on a glass substrate, following which its electrical characteristics were investigated. The content of MWCNTs was varied during electrospinning, while that of PCL was fixed. Further, a nanometer-thick thin film of silver was deposited on the nanofiber layer using a thermal evaporator to improve the electrical characteristics; the sheet resistance significantly reduced after this deposition. The results showed that this carbon nanotube nanofiber has potential applications in biotechnology and as a flexible transparent display material.
최근 평판디스플레이 산업이 성장함에 따라 품질향상을 위한 연구가 활발히 진행중이며 또한, 부품 소재 개발에 박차를 가하고 있다. 대형 평판디스플레이 중 낮은 전력소모와 광시야각이 우수한 TFT-LCD가 각광받고 있다. TFT-LCD 소자의 투명전극으로 사용되기 위해서는 면저항 10~1k Ohm/sq., 광투과율 85% 이상의 특성이 요구되며 ITO(Indium Tin Oxide의 약자) 타겟을 스퍼터링한 박막이 일반적으로 사용되고 있다. 본 연구에서는 $In_2O_3$ 나노 분말 제조 공법으로 제작된 ITO 타겟을 사용하여 양산성 및 대형화에 적합한 DC 마그네트론 스퍼터 방식으로 투명전극을 제조하였다. 일반적으로 사용되는 고정식 DC 마그네트론 스퍼터 방식은 타겟표면에 재증착(back deposition)되는 저급산화물로 인해 이물 또는 노즐(Nodule) 이 형성되고 이로 인해 비이상적이고 불안정한 방전 플라즈마가 박막의 특성을 저하시킨다. 이러한 문제점을 해결하기 위해 이동식 DC 마그네트론 스퍼터 방식을 채택하였으며 대형 타겟을 이용한 대형화 기판 제작과 안정적인 sputter yield로 인해 uniformity가 우수한 ITO 박막을 제조하였다. ITO 박막의 저면저항 고투과율 특성을 구현하기 위해 공정변수인 산소분압, 전류밀도(DC power) 그리고 증착온도에 따른 ITO 박막의 미세조직과 결정성을 관찰하였으며 전기적 특성을 분석하였다.
Kim, Mi-Jung;Oh, Byeong-Yun;Kim, Byoung-Yong;Kang, Dong-Hun;Park, Hong-Gyu;Lee, Kang-Min;Moon, Hyun-Chan;Seo, Dae-Shik
한국전기전자재료학회:학술대회논문집
/
한국전기전자재료학회 2007년도 추계학술대회 논문집
/
pp.433-433
/
2007
In this paper, we investigated the feasibility of applying ZnO:Al films to display devices as transparent electrodes, and reported the electro-optical (EO) characteristics of VA cells using ZnO:Al electrodes and compared them with those of VA cells using ITO electrodes. The experiment results show that a uniform vertical LC alignment and a large pretilt angle were achieved. Also, the good voltage-transmittance curve, response time, and capacitance-voltage characteristics were observed for the rubbing aligned VA-LCD using ZnO:Al electrodes m comparison with ITO electrodes. In other words, the vertical alignment mode based on the ZnO:Al electrodes showed appropriate electro-optical characteristics and high transparency in comparison with that based on the ITO electrodes. These results indicated that the transparent ZnO:Al electrodes of the liquid crystal displays could substitute the ITO electrodes.
Nanopiezotronics is an emerging area of nanotechnology with a variety of applications that include piezoelectric field-effect transistors and diodes, self-powered nanogenerators and biosystems, and wireless nano/biosensors. By exploiting coupled piezoelectric and semiconducting characteristics, it is possible for nanowires, nanobelts, or nanorods to generate rectifying current and potential under external mechanical energies such as body movement (handling, winding, pushing, and bending) and muscle stretching, vibrations (acoustic and ultrasonic waves), and hydraulic forces (body fluid and blood flow). Fully transparent, flexible (TF) nanogenerators that are operated by external mechanical forces will be presented. By controlling the density of the seed layer for ZnO nanorod growth, transparent ZnO nanorod arrays were grown on ITO/PES films, and a TF conductive electrode was stacked on the ZnO nanorods. The resulting integrated TF nanodevice (having transparency exceeding 70 %) generated a noticeable current when it was pushed by application of an external load. The output current density was clearly dependent on the force applied. Furthermore, the output current density depended strongly on the morphology and the work function of the top electrode. ZnO nanorod-based nanogenerators with a PdAu, ITO, CNT, and graphene top electrodes gave output current densities of approximately $1-10\;uA/cm^2$ at a load of 0.9 kgf. Our results suggest that our TF nanogenerators are suitable for self-powered TF device applications such as flexible self-powered touch sensors, wearable artificial skins, fully rollable display mobile devices, and battery supplements for wearable cellular phones.
Indium tin oxide (ITO) transparent electrodes, which are used to manufacture organic light-emitting diodes, are used in light-emitting surface electrodes of display EL panels such as cell phones and TVs, liquid crystal panels, transparent switches, and plane heating elements. ITO is a major component that consists of indium and tin and is advantageous in terms of obtaining sheet resistance and light transmittance in a thin film. However, the optical performance of devices decreases with an increase in its thickness. A digital holography system was constructed and measured for the step measurement of the ITO thin film, and the reliability of the technique was verified by comparing the FE-SEM measurement results. The error rate of the step difference measurement was within ±5%. This result demonstrated that this technique is useful for applications in advanced MEMS and NEMS industrial fields.
Next-generation displays should be transparent and flexible as well as having high resolution and frame number. The main factor for active matrix organic light emitting diode and next-generation displays is the development of TFTs (thin-film transistors) with high mobility and large area uniformity. The TFTs used for transparent displays are mainly oxide TFT that has oxide semiconductor as channel layer. Zinc-oxide based substances such as indium-gallium-zinc-oxide has attracted attention in the display industry. In this paper, the mobility improvement of low cost oxide TFT is studied for fast operating next-generation displays by overcoming disadvantages of amorphous silicon TFT that has low mobility and poly silicon TFT that requires expensive equipment for complex process and doping process.
Kim, Yoo-Seok;Song, Woo-Seok;Cha, Myoung-Jun;Lee, Su-Il;Cho, Ju-Mi;Kim, Sung-Hwan;Park, Chong-Yun
한국진공학회:학술대회논문집
/
한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
/
pp.188-188
/
2012
Graphene, with its unique physical and structural properties, has recently become a proving ground for various physical phenomena, and is a promising candidate for a variety of electronic device and flexible display applications. Compared to indium tin oxide (ITO) electrodes, which have a typical sheet resistance of ${\sim}60{\Omega}$/sq and ~85% transmittance in the visible range, the chemical vapor deposition (CVD) synthesized graphene electrodes have a higher transmittance in the visible to IR region and are more robust under bending. Nevertheless, the lowest sheet resistance of the currently available CVD graphene electrodes is higher than that of ITO. In this study, we report a creative strategy, irradiation of microwave at room temperature under vacuum, for obtaining size-homogeneous gold nano-particle doping on graphene. The gold nano-particlization promoted by microwave irradiation was investigated by transmission electron microscopy, electron energy loss spectroscopy elemental mapping. These results clearly revealed that gold nanoparticle with ${\geq}30$ nm in mean size were decorated along the surface of the graphene after microwave irradiation. The fabrication high-performance transparent conducting film with optimized doping condition showed a sheet resistance of ${\geq}100{\Omega}$/sq. at ~90% transmittance. This approach advances the numerous applications of graphene films as transparent conducting electrodes.
The $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ multilayered structure for the transparent electrodes in plasma display panel was designed by essential macleod program (EMP) and the multilayered film was deposited on a glass substrate by direct-current (DC)/radio-frequency (RF) magnetron sputtering system. During film deposition process, the Ag layer in $TiO_2$/Ag/$TiO_2$ structure became oxidized and the filter characteristic was degraded easily. In this study, ZnS layer was adopted as a diffusion blocking layer between $TiO_2$ and Ag to prevent the oxidation of Ag layer efficiently in $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ structure. Based on the AES depth profiling analysis, the Ag layer was effectively protected by the ZnS layer as compared with the $TiO_2$/Ag/$TiO_2$ multilayered films without ZnS as an antioxidant layer. The 3 times stacked $TiO_2$/ZnS/Ag/ZnS/$TiO_2$ films have low sheet resistance of $1.22{\Omega}/{\square}$ and luminous transmittance was as high as 62% in the visible ranges.
Carbon nanotubes (CNTs) are attractive for field emitter because of their outstanding electrical, mechanical, and chemical properties. Several applications using CNTs as field emitters have been demonstrated such as field emission display (FED), backlight unit (BLU), and X-ray source. In this study, we fabricated a CNT cathode using transparent ultra-thin CNT film. First, CNT aqueous solution was prepared by ultrasonically dispersing purified single-walled carbon nanotubes (SWCNTs) in deionized water with sodium dodecyl sulfate (SDS). To obtain the CNT film, the CNT solution in a milliliter or even several tens of micro-litters was deposited onto a porous alumina membrane through vacuum filtration process. Thereafter, the alumina membrane was solvated by the 3 M NaOH solution and the floating CNT film was easily transferred to an indium-tin-oxide (ITO) glass substrate of $0.5\times0.5cm^2$ with a film mask. The transmittance of as-prepared ultra-thin CNT films measured by UV-Vis spectrophotometer was 68~97%, depending on the amount of CNTs dispersed in an aqueous solution. Roller activation, which is a essential process to improve the field emission characteristics of CNT films, increased the UV-Vis transmittance up to 93~98%. This study presents SEM morphology of CNT emitters and their field emission properties according to the concentration of CNTs in an aqueous solutions. Since the ultra-thin CNT emitters prepared from the solutions show a high peak current density of field emission comparable to that of the paste-base CNT emitters and do not contain outgassing sources such as organic binders, they are considered to be very promising for small-size-but-high-end applications including X-ray sources and microwave power amplifiers.
연속적인 1차원의 나노섬유를 제작하는데 빠르고 효과적인 방법인 전기방사법을 이용하여 Ag 나노섬유로 이루어진 투명전극을 제작하고 그 특성을 측정하였다. 전기방사를 통해 제조된 Ag 나노섬유는 큰 종횡비를 갖게 되며 열처리를 통해 생성된 섬유사이의 fused junction이 접촉저항을 낮추어 전기적 특성을 향상시킨다. Ag/고분자 용액을 졸-겔 방법을 이용하여 제조한 후 glass 기판위에 방사시켜 Ag/고분자 나노섬유 구조체를 제작하고 $200{\sim}500^{\circ}C$, 2시간 열처리하여 고분자가 일정부분 제거되고 전도성이 향상된 Ag 나노섬유 투명전극을 제조하였다. Ag 나노섬유의 모폴로지를 FE-SEM을 통해 확인하였고 Ag 나노섬유 투명전극의 투과도와 면저항을 UV-vis-NIR spectroscopy와 I-V특성 측정장치를 사용하여 측정하였다. 투과도 83%에서 면저항 $250{\Omega}/sq$의 투명전극을 제작하였으며 전도성필름에 적합한 수준이다. Ag 나노섬유로 이루어진 투명 전극은 전기적, 광학적, 기계적 특성이 우수하여 차세대 유연 디스플레이에 적용 가능성을 보여준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.