• Title/Summary/Keyword: transformed plants

Search Result 271, Processing Time 0.031 seconds

Production of stable chloroplast-transformed plants in potato (Solanum tuberosum L.) (안정적 감자 엽록체 형질전환 식물체 생산)

  • Min, Sung-Ran;Jeong, Won-Joong;Park, Ji-Hyun;Lyu, Jae-Il;Lee, Jeong-Hee;Oh, Kwang-Hoon;Chung, Hwa-Jee;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.42-48
    • /
    • 2011
  • Chloroplast genetic engineering of higher plants offers several unique advantages compared with nuclear genome transformation, such as high levels of transgene expression, a lack of position effect due to site-specific transgene integration by homologous recombination, multigene engineering in a single transformation event and reducing risks of gene flow via pollen due to maternal inheritance. We established a reproducible chloroplast transformation system of potato using a tobacco specific plastid transformation vector, pCtVG (trnI-Prrn-aadA-mgfp-TpsbA-trnA). Stable transgene integration into chloroplast genomes and the homoplasmic state of the transgenome were confirmed by PCR and Southern blot analyses. Northern, immunoblot analysis, and GFP fluorescence imaging revealed high expression and accumulation of GFP in the plastids of potato leaves. This system would provide new opportunities for genetic improvement and mass production of value added foreign proteins in this crop.

CaM-5, a soybean calmodulin, is required for disease resistance against both a bacterial and fungal pathogen in tomato, Lycopersicum esculentum (대두 calmoduine유전자 SCaM-5를 발현하는 형질전환 토마토의 병 저항성 검정)

  • Lee, Hyo-Jung;Baek, Dong-Won;Lee, Ok-Sun;Lee, Ji-Young;Kim, Dong-Giun;Chung, Woo-Sik;Yun, Jae-Gil;Lee, Sin-Woo;Kwak, Sang-Soo;Nam, Jae-Seung;Kim, Doh-Hoon;Yun, Dae-Jin
    • Journal of Plant Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.93-97
    • /
    • 2006
  • The calmodulin as a Ca$^{2+}$-binding protein mediates cellular Ca$^{2+}$ signals in response to a wide array of stimuli in higher eukaryotes. Plants produce numerous calmodulin isoforms that exhibit differential gene expression patterns and sense different Ca$^{2+}$ signals. SCaM-5 is a soybean calmodulin that is involved in plant defense signaling. Here, we constructed a SCaM-5 CDNA under control of CaMV 35S promoter and transformed it into tomato (Lycopersicon esculentum). The constitutive over-expression of SCaM-5 in tomato plants exhibited a high levels of pathogenesis-related (PR) gene expression, and conferred an enhanced resistance to two fungal pathogen (Phytophthora capsici, Fusarium oxysporum), and a bacterial pathogen, Pseudomonas syringae pv. tomato DC3000. Thus, this results collectively suggest that SCaM-5 plays an important role in plant defense of tomato.

Ginseng Transformation of Betaine Aldehyde Dehydrogenase Gene Relative Salt Resistant through Somatic Embryogenesis (염류내성관련 유전자 Betaine Aldehyde Dehydrogenase Gene의 인삼 체세포 배발생을 통한 형질전환)

  • Yoon Young-Sang;Bae Chang-Hyu;Song Won-Seob;Yoon Jae-Ho;Yang Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.18 no.1
    • /
    • pp.15-21
    • /
    • 2005
  • Korean ginseng(Panax ginseng C.A. Meyer) is very difficult to obtain stable production of qualified ginseng roots because of variable stresses in soil environments. In transformation of ginseng with betain aldehyde dehydrogenase gene, compounds synthesized for controlling osmotic pressure such as proline, glycine, betaine, polyols and sugar were accumulated in cell for salt resistance in transgenic plants. 2 Agrobactgerium conjugants were acquired with bet A and bet B genes for solt resistant plants. A. tumefaciens MP90/pBetA and A. tumefaciens MP90/pBetB were recombined for increasing the tolerance to salt stress. To confirm the transformation of the binary vector, tobacco plant was transformed, and the transformant can grow on media containing high concentration of kanamycin. To identify NPT 11, BetA and BetB genes of the transformants, the band on the agarose was confirmed by PCR and RT-PCR techniques. The transformants of ginseng with bet A and bet B genes were acquired on the phytohormone free basic MS media containing only antibiotics and 1M mannitol used for selection of transgenic plant, but the transfomation efficiency for BetA and BetB was very low.

Functional Analysis of the Stress-Inducible Soybean Calmodulin Isoform-4 (GmCaM-4) Promoter in Transgenic Tobacco Plants

  • Park, Hyeong Cheol;Kim, Man Lyang;Kang, Yun Hwan;Jeong, Jae Cheol;Cheong, Mi Sun;Choi, Wonkyun;Lee, Sang Yeol;Cho, Moo Je;Kim, Min Chul;Chung, Woo Sik;Yun, Dae-Jin
    • Molecules and Cells
    • /
    • v.27 no.4
    • /
    • pp.475-480
    • /
    • 2009
  • The transcription of soybean (Glycine max) calmodulin isoform-4 (GmCaM-4) is dramatically induced within 0.5 h of exposure to pathogen or NaCl. Core cis-acting elements that regulate the expression of the GmCaM-4 gene in response to pathogen and salt stress were previously identified, between -1,207 and -1,128 bp, and between -858 and -728 bp, in the GmCaM-4 promoter. Here, we characterized the properties of the DNA-binding complexes that form at the two core cis-acting elements of the GmCaM-4 promoter in pathogen-treated nuclear extracts. We generated GUS reporter constructs harboring various deletions of approximately 1.3-kb GmCaM-4 promoter, and analyzed GUS expression in tobacco plants transformed with these constructs. The GUS expression analysis suggested that the two previously identified core regions are involved in inducing GmCaM-4 expression in the heterologous system. Finally, a transient expression assay of Arabidopsis protoplasts showed that the GmCaM-4 promoter produced greater levels of GUS activity than did the CaMV35S promoter after pathogen or NaCl treatments, suggesting that the GmCaM-4 promoter may be useful in the production of conditional gene expression systems.

Transiently Experessed Salt-Stress Protection of Rice by Transfer of a Bacterial Gene, mtlD

  • Lee, Eun-A;Kim, Jung-Dae;Cha, Yoo-Kyung;Woo, Dong-Ho;Han, In-Seob
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.415-418
    • /
    • 2000
  • Productivity of a rice plant is greatly influenced by salt stress. One of the ways to achieve tolerance to salinity is to transfer genes encoding protective enzymes from other organisms, such as microorganisms. The bacterial gene, mtlD, which encodes mannitol-1-phosphate dehydrogenase (Mtl-DH), was introduced to the cytosol of a rice plant by an imbibition technique to overproduce mannitol. The germination and survival rate of the imbibed rice seeds were markedly increased by transferring the mtlD gene when it was delivered in either a pBIN19 or pBmin binary vector. When a polymerase chain reaction was performed with the genomic DNAs of the imbibed rice leaves as a template and with mtlD-specific primers, several lines were shown to contain an exogenous mtlD DNA. However, a reverse transcription (RT)-PCR analysis revealed that not all of them showed an expression of this foreign gene. This paper demonstrates that the growth and germination of rice plants transiently transformed with the bacterial gene, mtlD, are enhanced and these enhancements may have resulted from the experssion of the mtlD gene. The imbibition method empolyed in this study fulfills the requirements for testing the function of such a putative gene in vivo prior to the production of a stable transgenic plant.

  • PDF

The cloning and characterization of the small GTP-binding Protein RacB in rice.

  • Jung, Young-Ho;Jaw, Nam-Soo
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.81.2-82
    • /
    • 2003
  • Plants have evolved along with pathogens, and they have developed sophisticated defense systems against specific microorganisms to survive. G-protons are considered one of the upstream signaling components working as a key for the defense signal transduction pathway. For activation and inactivation of G-protein, GTP-biding proteins are involved. GTP -binding proteins are found in all organisms. Small GTP-binding proteins, having masses of 21 to 30kD, belong to a superfamily, often named the Ras supefamily because the founding members are encoded by human Ras genes initially discovered as cellular homologs of the viral ras oncogene. Members of this supefamily share several common structural features, including several guanine nucleotide binding domains and an effector binding domain. However, exhibiting a remarkable diversity in both structure and function. They are important molecular switches that cycle between the GDP-bound inactive form into the GTP-bound active form through GDP/GTP replacement. In addition, most GTP-binding proteins cycle between membrane-bound and cytosolic forms. such as the RAC family are cytosolic signal transduction proteins that often are involved in processing of extracellular stimuli. Plant RAC proteins are implicated in regulation of plant cell architecture secondary wall formation, meristem signaling, and defense against pathogens. But their molecular mechanisms and functions are not well known. We isolated a RacB homolog from rice to study its role of defense against pathogens. We introduced the constitutively active and the dominant negative forms of the GTP-hinging protein OsRacB into the wild type rice. The dominant negative foms are using two forms (full-sequence and specific RNA interference with RacB). Employing southern, and protein analysis, we examine to different things between the wild type and the transformed plant. And analyzing biolistic bombardment of onion epidermal cell with GFP-RacB fusion protein revealed association with the nucle.

  • PDF

Nutritional Biochemistry of Selenium (셀레늄의 영양생화학)

  • Choi, Yong-Soon;Hesketh, John E.
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.661-670
    • /
    • 2006
  • Selenium (Se) obtained from dietary sources including cereals, grains and vegetables is an essential micronutrient for normal function of the body. Plants convert Se into selenomethionine and incorporate it into proteins in place of methionine, while higher animals synthesize selenoproteins containing selenocysteine. Excessive Se in the body is methylated stepwise to methylated selenium metabolites from selenide. Both inorganic and organic forms of selenium can be the nutritional sources in human, and they are transformed to selenide and then the amino acid selenocysteine attached to a specific $tRNA^{ser(sec)}$. The selenocysteine (Sec) is incorporated into selenoprotein sequences by the UGA codon. The decoding of UGA as Sec requires specific mechanisms because UGA is normally read as a stop codon: cis-acting sequences in the mRNA (the selenocysteine insertion sequence, SECIS, within the 3'untranslated region) and trans -acting factors dedicated to Sec incorporation are required for incorporation of Sec during translation of selenoprotein mRNAs. Approximately 25 selenoproteins have been identified in mammals. Several of these, including glutathione peroxidases, thioredoxin reductases and selenoprotein P, have been purified or cloned, allowing further characterization of their biological function. The antioxidant properties of selenoproteins help prevent cellular damage from free radicals which may contribute to the development of chronic disease such as cancer and heart disease. Other selenoproteins have important roles in regulation of thyroid function and play a role in the immune system. Daily selenium iatake was reported to be $42.0{\pm}16.9{\mu}g/day$ in Korean adult women. This review focuses on the metabolism and biological functions of selenium, and the nutritional status of selenium in the Korean population.

Molecular Approaches for Cloning of Important Higher Plant Genes (고등식물의 유용 유전자 크로닝을 위한 분자적 접근)

  • ;Ala
    • KSBB Journal
    • /
    • v.10 no.1
    • /
    • pp.89-96
    • /
    • 1995
  • An Avabidofsis thaliana gene encoding phosphoribosyl anthranilate transferase is shown to be the gene that is defective in blue fluorescent trp 1 mutant plants. This gene, named PAT1, coding region is homologous to those for the phosphoribosyl anthranilate transferase from many microorganisms. This is due to a defect in tryptophan biosynthesis that leads to an accumulation of anthranilate, a fluorescent intermediate in the tryptophan pathway. PAT1 is a single-copy gene that complements all of the visible phenotypes of the different trp1 mutants. Experiments to determine the regulation of the PAT1 gene are in progress. The wild-type PAT1 promoter and several promoter deletions of PAT1 gene have been transformed into Arabidopsis tryptophan mutants. These constructs might identify promoter elements that control this patterns. We have isolated the homozygous lines in T3 seeds and analysed the protein levels using PAT antibody and PAT protein level increased two fold in pHSl07. Finally, the potential of using PAT1 as a selectable marker or visible reporter of gene expression is being explored.

  • PDF

A Study on development of Resourse - saving site Planning techniques based on utilization of Ecosystem - Focused on Housing site - (생태계를 이용한 자원절약형 단지계획기법 개발에 관한 연구 - 주거단지를 중심으로-)

  • 이영무
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.18 no.2
    • /
    • pp.111-125
    • /
    • 1990
  • Korea is a nation with poor natural resources. There is a greats need to save resources that are running out in fast face. The purpose of this thesis is to bind the means to save rosources in housing site, especially in highrise apartment. The reason why the high-rise apartments are chosen as a case is 7hat the high-rise is becoming the major form of dwelling in most urban areas. As a tool of saving the ecological way is chosen because ecological energy is free, clean and unlimited. The resources to be saved are divided into two categories, namely energy and non - energy resources as water, land and food. The contents of the thesis are comprised of 4 chapters. The early chaspters are devoted to the understanding of the ecosystem and problems of current energy consumption in the apartment. It is fellowed by the introduction of the hypothesis that can possibly save reouruces. The hypothesis are then transformed into the actual theories through verification, to be established as the new techniques of the site planning. The ecosystem is the functional relationship between the living organisms and their physical surroundings. The living organisms are the plants that produce, animals that consume and bacterias that decompose. They live in the environment which consists of the three worlds of atmosphere, hydrosphere and lithosphere. The whole system is activated by the solar energy that turns the inorganic mallet- into the living organism and back to the inorganic. It is the recycling principle of the ecosystem. The elements of ecosystem that fan be unilimited as the tools of resources -saving are the sun, wind, water, soil, plant and waste. They are unlimited sources of energy. free of pollution and cheap in price. Each of these ecological elements Provide the opportunities that can save the heating fuel, air conditioning energy, water resource, land and food. The ecological approch should be pursued actively in this age of short resources and growing pollution. In the scale of total energy consumption the housing takes the second position next to the industrial use. It is followed by the transportation which shows for less consumption than former two.

  • PDF

Functional Characterization of aroA from Rhizobium leguminosarum with Significant Glyphosate Tolerance in Transgenic Arabidopsis

  • Han, Jing;Tian, Yong-Sheng;Xu, Jing;Wang, Li-Juan;Wang, Bo;Peng, Ri-He;Yao, Quan-Hong
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1162-1169
    • /
    • 2014
  • Glyphosate is the active component of the top-selling herbicide, the phytotoxicity of which is due to its inhibition of the shikimic acid pathway. 5-Enolpyruvylshikimate-3-phosphate synthase (EPSPS) is a key enzyme in the shikimic acid pathway. Glyphosate tolerance in plants can be achieved by the expression of a glyphosate-insensitive aroA gene (EPSPS). In this study, we used a PCR-based two-step DNA synthesis method to synthesize a new aroA gene ($aroA_{R.\;leguminosarum}$) from Rhizobium leguminosarum. In vitro glyphosate sensitivity assays showed that $aroA_{R.\;leguminosarum}$ is glyphosate tolerant. The new gene was then expressed in E. coli and key kinetic values of the purified enzyme were determined. Furthermore, we transformed the aroA gene into Arabidopsis thaliana by the floral dip method. Transgenic Arabidopsis with the $aroA_{R.\;leguminosarum}$ gene was obtained to prove its potential use in developing glyphosate-resistant crops.