DOI QR코드

DOI QR Code

Production of stable chloroplast-transformed plants in potato (Solanum tuberosum L.)

안정적 감자 엽록체 형질전환 식물체 생산

  • 민성란 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 정원중 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 박지현 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 유재일 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 이정희 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 오광훈 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 정화지 ((주)젠닥스) ;
  • 유장렬 (한국생명공학연구원 식물시스템공학연구센터)
  • Received : 2011.03.04
  • Accepted : 2011.03.15
  • Published : 2011.03.31

Abstract

Chloroplast genetic engineering of higher plants offers several unique advantages compared with nuclear genome transformation, such as high levels of transgene expression, a lack of position effect due to site-specific transgene integration by homologous recombination, multigene engineering in a single transformation event and reducing risks of gene flow via pollen due to maternal inheritance. We established a reproducible chloroplast transformation system of potato using a tobacco specific plastid transformation vector, pCtVG (trnI-Prrn-aadA-mgfp-TpsbA-trnA). Stable transgene integration into chloroplast genomes and the homoplasmic state of the transgenome were confirmed by PCR and Southern blot analyses. Northern, immunoblot analysis, and GFP fluorescence imaging revealed high expression and accumulation of GFP in the plastids of potato leaves. This system would provide new opportunities for genetic improvement and mass production of value added foreign proteins in this crop.

고등식물의 엽록체 유전공학은 핵 형질전환과 비교해 볼때 여러 가지 독특한 장점을 가진다. 높은 transgene 발현율, 상동 재조합에 의한 site-specific transgene의 삽입으로 인해 유전자의 position effect가 없으며, 단일 형질전환으로 동시에 여러 유전자의 도입이 가능하고 모계 유전으로 인해 화분 방출 위험을 감소시킬 수 있다. 담배 specific한 pCtVG (trnI-Prrn-aadA-mgfp-TpsbA-trnA) 벡터를 이용하여 안정적인 감자 엽록체 형질전환 시스템을 개발하였다. 감자 엽록체 게놈으로 외래유전자의 삽입과 homoplasmic level은 PCR과 Southern blot 분석으로 확인하였다. Northern과 immunoblot 분석 및 GFP fluorescence imaging을 통하여 엽록체 형질전환체의 잎에서 GFP 유전자가 강하게 발현, 축적됨을 알 수 있었다. 본 연구에서 확립된 감자 엽록체 형질전환 시스템을 이용하여 유용 유전자를 도입함으로써 농업적 형질을 개선하거나 고부가가치 단백질을 대량 생산하는 감자를 보다 효율적으로 개발할 수 있을 것이다.

Keywords

References

  1. Bock R (2001) Transgenic chloroplast in basic research and plant biotechnology. J Mol Biol 312:425-438 https://doi.org/10.1006/jmbi.2001.4960
  2. Chung HJ, Suh YB, Jeong WJ, Min SR, Liu JR (2006) Chloroplast genetic transformation in higher plants: an encounter between prokaryote and eukaryote. J Plant Biotechnol 33:185-194 https://doi.org/10.5010/JPB.2006.33.3.185
  3. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20:581-586
  4. Daniell H (2007) Transgene containment by maternal inheritance: effective or elusive? Proc Natl Acad Sci USA 104:6879-6880 https://doi.org/10.1073/pnas.0702219104
  5. Davarpanah SJ, Jung SH, Kim YJ, Park YI, Min SR, Liu JR, Jeong WJ (2009) Stable Plastid Transformation in Nicotiana benthamiana. J Plant Biol 52:244-250 https://doi.org/10.1007/s12374-009-9023-0
  6. De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19:71-74 https://doi.org/10.1038/83559
  7. De Marchis F, Wang Y, Stevanato P, Arcioni S, Bellucci M (2009) Genetic transformation of the sugar beet plastome. Transgenic Res 18:17-30 https://doi.org/10.1007/s11248-008-9193-4
  8. Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo JM, Tissot G (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55:479-489 https://doi.org/10.1007/s11103-004-0192-4
  9. Guda G, Lee SB, Daniell H (2000) Stable expression of a biodegradable protein-based polymer in tobacco chloroplasts. Plant Cell Rep 19:257-262 https://doi.org/10.1007/s002990050008
  10. Hou BK, Zhou YH, Wan LH, Zhang ZL, Shen GF, Chen ZH, Hu ZM (2003) Chloroplast transformation in oilseed rape. Transgenic Res 12:111-114 https://doi.org/10.1023/A:1022180315462
  11. Jeong SW, Jeong WJ, Woo JW, Choi DW, Park YI, Liu JR (2004) Dicistronic expression of the green fluorescent protein and antibiotic resistance genes in the plastid for selection and tracking of plastid-transformed cells in tobacco. Plant Cell Rep 22:747-751 https://doi.org/10.1007/s00299-003-0740-4
  12. Jeong WJ, Min SR, Liu JR (2007) Enhancement of chloroplast transformation frequency by using mesophyll cells containing a few enlarged chloroplasts from nuclear transformed plants in tobacco. J Plant Biotechnol 34:271-275 https://doi.org/10.5010/JPB.2007.34.3.271
  13. Khan MS, Maliga P (1999) Fluorescent antibiotic resistance marker for tracking plastid transformation in higher plants. Nat Biotechnol 17:910-915 https://doi.org/10.1038/12907
  14. Ko SM, Kim HC, Yoo BH, Woo JW, Chung HJ, Choi DW, Liu JR (2006) Production of human serum albumin in chloroplasttransformed tobacco plants. J Plant Biotechnol 33:233-236 https://doi.org/10.5010/JPB.2006.33.4.233
  15. Kumar S, Dhingra A, Daniell H (2004a) Plastid-expressed betaine aldehyde dehydrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol 136:2843-2854 https://doi.org/10.1104/pp.104.045187
  16. Kumar S, Dhingra A, Daniell H (2004b) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56:203-216 https://doi.org/10.1007/s11103-004-2907-y
  17. Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers tolerance. Mol Breed 11:1-13 https://doi.org/10.1023/A:1022100404542
  18. Lee SM, Kang K, Chung H, Yoo Sh, Xu XM, Lee SB, Cheong JJ, Daniell H, Kim M (2006) Plastid transformation in the monocotyledonous cereal crop rice (Oryza sativa) and transmission of transgenes to their progeny. Mol Cells 21:401-410
  19. Lelivelt CL, McCabe MS, Newell CA, de Snoo CB, van Dun KM, Birch-Machin I, Gray JC, Mills KH, Nugent JM (2005) Stable plastid transformation in lettuce (Lactuca sativa L.). Plant Mol Biol 58:763-774 https://doi.org/10.1007/s11103-005-7704-8
  20. Liu CW, Lin CC, Chen J, Tseng MJ (2007) Stable chloroplast transformation in cabbage (Brassica oleracea L. var. capitata L.) by particle bombardment. Plant Cell Rep 26:1733-1744 https://doi.org/10.1007/s00299-007-0374-z
  21. Liu JR, Jeong WJ, Chung HJ, Min SR, Park JY (2006) Plastid transformation system to prevent the intramolecular recombination of transgene. PCT/2006/004377
  22. Min SR, Kim JW, Jeong WJ, Lee YB, Liu JR (2009) Development of transgenic sweet potato producing human lactoferrin. J Plant Biotechnol 36:224-229 https://doi.org/10.5010/JPB.2009.36.3.224
  23. Min SR, Jeong WJ, Kim SW, Lee JH, Chung H-J, Liu JR (2010) Current status on plant molecular farming via chloroplast transformation. J Plant Biotechnol 37:275-282 https://doi.org/10.5010/JPB.2010.37.3.275
  24. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  25. Nguyen TT, Nugent G, Cardi T, Dix PJ (2005) Generation of homoplasmic plastid transformants of a commercial cultivar of potato (Solanum tuberosum L.). Plant Science 168:1495-1500 https://doi.org/10.1016/j.plantsci.2005.01.023
  26. Nugent GD, Coyne S, Nguyen TT, Kavanagh TA, Dix PJ (2006) Nuclear and plastid transformation of Brassica oleracea var, botrytis (cauliflower) using PEG-mediated uptake of DNA into protoplast. Plant Sci 170:135-140 https://doi.org/10.1016/j.plantsci.2005.08.020
  27. Okumura S, Sawada M, Park Y, Hayashi T, Shimamura M, Takase H, Tomizawa KI (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15:637-646 https://doi.org/10.1007/s11248-006-9009-3
  28. Ruf S, Hermann M, Berger LJ, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19:870-875 https://doi.org/10.1038/nbt0901-870
  29. Ruhlman T, Ahangri R, Devine A, Samsam M, Daniell H (2007) Expression of cholera toxin B-proinsulin fusion protein in lettuce and tobacco chloroplast-oral administration protects against development of insulitis in non-obese diabetic mice. Plant Biotechnol J 5:495-510 https://doi.org/10.1111/j.1467-7652.2007.00259.x
  30. Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PTJ, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19:209-216 https://doi.org/10.1046/j.1365-313X.1999.00508.x
  31. Sikdar SR, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in Arabidopsis thaliana. Plant Cell Rep 18:20-24 https://doi.org/10.1007/s002990050525
  32. Singh AK, Verma SS, Bansal KC (2010) Plastid transformation in eggplant (Solanum melongena L.). Transgenic Res 19:113-119 https://doi.org/10.1007/s11248-009-9290-z
  33. Skajinskaia M, Svab Z, Maliga P (2003) Plastid transformation in Lesquerella fendleri, an oilseed Brassicacea. Transgenic Res 12:115-122 https://doi.org/10.1023/A:1022110402302
  34. Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87:8526-8530 https://doi.org/10.1073/pnas.87.21.8526
  35. Valkov VT, Gargano D, Manna C, Formisano G, Dix PJ, Gray JC, Scotti N, Cardi T (2011) High efficiency plastid transformation in potato and regeneration of transgene expresson in leaves and tubers by alternative 5' and 3' regulatory sequences. Transgenic Res 20:137-151 https://doi.org/10.1007/s11248-010-9402-9
  36. Wang HH, Yin WB, Hu ZM (2009) Advances in chloroplast engineering. J Genet Genomics 36:387-398 https://doi.org/10.1016/S1673-8527(08)60128-9
  37. Youm JW, Jeon JH, Kim H, Min SR, Kim MS, Joung H, Jeong WJ, Kim HS (2010) High-level expression of a human $\beta$-site APP cleaving enzyme in transgenic tobacco chloroplasts and its immunogenicity in mice. Transgenic Res 19:1099-1108 https://doi.org/10.1007/s11248-010-9383-8
  38. Zubko MK, Zubko EI, Zuilen KV, Meyer P, Day A (2004) Stable transformation of petunia plastids. Transgenic Res 13:523-530 https://doi.org/10.1007/s11248-004-2374-x