DOI QR코드

DOI QR Code

Functional Analysis of the Stress-Inducible Soybean Calmodulin Isoform-4 (GmCaM-4) Promoter in Transgenic Tobacco Plants

  • Park, Hyeong Cheol (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Kim, Man Lyang (Department of Infection Biology, Biozentrum, University of Basel) ;
  • Kang, Yun Hwan (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Jeong, Jae Cheol (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Cheong, Mi Sun (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Choi, Wonkyun (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Lee, Sang Yeol (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Cho, Moo Je (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Kim, Min Chul (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Chung, Woo Sik (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University) ;
  • Yun, Dae-Jin (Division of Applied Life Science (Brain Korea 21 program), Plant Molecular Biology and Biotechnology Research Center and Environmental Biotechnology National Core Research Center, Gyeongsang National University)
  • Received : 2009.01.22
  • Accepted : 2009.02.26
  • Published : 2009.04.30

Abstract

The transcription of soybean (Glycine max) calmodulin isoform-4 (GmCaM-4) is dramatically induced within 0.5 h of exposure to pathogen or NaCl. Core cis-acting elements that regulate the expression of the GmCaM-4 gene in response to pathogen and salt stress were previously identified, between -1,207 and -1,128 bp, and between -858 and -728 bp, in the GmCaM-4 promoter. Here, we characterized the properties of the DNA-binding complexes that form at the two core cis-acting elements of the GmCaM-4 promoter in pathogen-treated nuclear extracts. We generated GUS reporter constructs harboring various deletions of approximately 1.3-kb GmCaM-4 promoter, and analyzed GUS expression in tobacco plants transformed with these constructs. The GUS expression analysis suggested that the two previously identified core regions are involved in inducing GmCaM-4 expression in the heterologous system. Finally, a transient expression assay of Arabidopsis protoplasts showed that the GmCaM-4 promoter produced greater levels of GUS activity than did the CaMV35S promoter after pathogen or NaCl treatments, suggesting that the GmCaM-4 promoter may be useful in the production of conditional gene expression systems.

Keywords

Acknowledgement

Supported by : Rural Development Administration, Ministry of Education, Science and Technology in Korea

References

  1. Abel, S., and Theologis, A. (1994). Transient transformation of Arabidopsis leaf protoplast: A versatile experimental system to study gene expression. Plant J. 5, 421-427 https://doi.org/10.1111/j.1365-313X.1994.00421.x
  2. Aoyama, T., and Chua, N.H. (1997). A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11, 605-612 https://doi.org/10.1046/j.1365-313X.1997.11030605.x
  3. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.D., Smith, J.A., and Struhl, K. (1987). Current protocols in molecular biology, Vol. 2., (New York, USA: John Wiley and Sons)
  4. Bush, D.S. (1995). Calcium regulation in plant cells and its role in signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 95-122 https://doi.org/10.1146/annurev.pp.46.060195.000523
  5. Cheung, W.Y. (1980). Calmodulin plays a pivotal role in cellular regulation. Science 207, 19-27 https://doi.org/10.1126/science.6243188
  6. Chin, D., and Means, A.R. (2000). Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 10, 322-328 https://doi.org/10.1016/S0962-8924(00)01800-6
  7. Cho, M.J., Vaghy, P.L., Kondo, R., Lee, S.H., David, J.P., Rehl, R., Heo, W.D., and Johnson, J.D. (1998). Reciprocal regulation of mammalian nitric oxide synthase and calcineurin by plant calmodulin isoforms. Biochemistry 37, 15593-15597 https://doi.org/10.1021/bi981497g
  8. Gawienowski, M.C., Szymanski, D., Perera, I.Y. and Zielinski, R.E. (1993) Calmodulin isoforms in Arabidopsis encoded by multiple divergent mRNAs. Plant Mol. Biol. 22, 215-225 https://doi.org/10.1007/BF00014930
  9. Harmon, A.C., Gribskov, M., and Harper, J.F. (2000). CDPKs-a kinase for every $Ca^{2+}$ signal? Trends Plant Sci. 5, 154-159 https://doi.org/10.1016/S1360-1385(00)01577-6
  10. Heo, W.D., Lee, S.H., Kim, M.C., Kim, J.C., Chung, W.S., Chun, H.J., Lee, K.J., Park, C.Y., Park, H.C., Choi, J.Y., et al. (1999). Involvement of specific calmodulin isoforms in salicylic acid-independent activation of plant disease resistance responses. Proc. Natl. Acad. Sci. USA 96, 766-771 https://doi.org/10.1073/pnas.96.2.766
  11. Hofmann, A., Proust, J., Dorowski, A., Schantz, R., and Huber, R. (2000). Annexin 24 from capsicum annuum. X-ray structure and biochemical characterization. J. Biol. Chem. 275, 8072-8082 https://doi.org/10.1074/jbc.275.11.8072
  12. Horsch, R.B., Fry, J., Hoffmann, N., Neidermeyer, J., Rogers, S.G., and Fraley, R.T. (1988). Leaf disc transformation. Plant molecular biology manual, S.B. Gelvin, and R.A., Schilperoort, eds. (Dordrecht: Kluwer Academic), A5
  13. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: $\beta$-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-3907
  14. Jeong, J.C., Shin, D., Lee, J., Kang, C.H., Baek, D., Cho, M.J., Kim, M.C., and Yun, D.-J. (2007). Isolation and characterization of a novel calcium/calmodulin-dependent protein kinase, AtCK, from Arabidopsis. Mol. Cells 24, 276-282
  15. Kao, Y.L., Deavours, B.E., Phelps, K.K., Walker, R.A., and Reddy, A.S.N. (2000). Bundling of microtubules by motor and tail domains of a kinesin-like calmodulin-binding protein from Arabidopsis: regulation by $Ca^{2+}$/Calmodulin. Biochem. Biophys. Res. Commun. 267, 201-207 https://doi.org/10.1006/bbrc.1999.1896
  16. Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999). Improving plant drough, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17, 287-291 https://doi.org/10.1038/7036
  17. Katagiri, F., Thilmony, R., and He, S.Y. (2002). The Arabidopsis thaliana-Pseudomonas interaction. In the Arabidopsis Book, C.R. Somerville, and E.M. Meyerowitz, eds., (Rockville, USA: American Society of Plant Biologists), doi/10.1199/tab. 0039, http://www.aspb.org/publications/arabidopsis/
  18. King, E.O., Ward, M.K., and Raney, D.E. (1954). Two simple media for the demonstration of phycocyanin and fluorescin. J. Lab. Clin. Med. 44, 301-307
  19. Kondo, R., Tikunova, S.B., Cho, M.J., and Johnson, J.D. (1999). A point mutation in a plant calmodulin is responsible for its inhibition of nitric-oxide synthase. J. Biol. Chem. 274, 36213-36218 https://doi.org/10.1074/jbc.274.51.36213
  20. Kozak, M. (1987). An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. 15, 8125-8148 https://doi.org/10.1093/nar/15.20.8125
  21. Kozak, M. (1988). Leader length and secondary structure modulate mRNA function under conditions of stress. Mol. Cell. Biol. 8, 2737-2744 https://doi.org/10.1128/MCB.8.7.2737
  22. Lee, S.H., Kim, J.C., Lee, M.S., Heo, W.D., Seo, H.Y., Yoon, H.W., Hong, J.C., Lee, S.Y., Bahk, J.D., Hwang, I., et alK (1995a). Identification of a novel divergent calmodulin isoform from soybean which has differential ability to activate calmodulin-dependent enzymes. J. Biol. Chem. 270, 21806-21812 https://doi.org/10.1074/jbc.270.37.21806
  23. Lee, S.I., Chun, H.J., Lim, C.O., Bahk, J.D., and Cho, M.J. (1995b). Regeneration of fertile transgenic rice plants from a cultivar, Nakdongbyeo. Korean J. Plant Tissue Culture 22, 175-182
  24. Liao, B., Gawienowski, M.C., and Zielinski, R.E. (1996). Differential stimulation of NAD kinase and binding of peptide substrates by wild-type and mutant plant calmodulin isoform. Arch. Biochem. Biophys. 327, 53-60 https://doi.org/10.1006/abbi.1996.0092
  25. Lee, A., Wong, S.T., Gallagher, D., Li, B., Storm, D.R., Scheuer, T., and Catterall, W.A. (1999). $Ca^{2+}$/calmodulin binds to and modulates P/Q-type calcium channels. Nature 299, 155-158
  26. Lee, S.H., Johnson, J.D., Walsh, M.P., Van Lierop, J.E., Sutherland, C., Xu, A., Snedden, W.A., Kosk-kosicka, D., Fromm, H., Narayanan, N., et alK (2000). Differential regulation of $Ca^{2+}$/calmodulin- dependent enzymes by plant calmodulin isoforms and free $Ca^{2+}$ concentration. Biochem. J. 350, 299-306 https://doi.org/10.1042/0264-6021:3500299
  27. Lim, E.-K., Roberts, M.R., and Bowles, D.J. (1998). Biochemical characterization of tomato annexin p35. Independence of calcium binding and phosphatase activities. J. Biol. Chem. 273, 34920-34925 https://doi.org/10.1074/jbc.273.52.34920
  28. Ling, V., Perera, I., and Zielinski, R.E. (1991). Primary structures of Arabidopsis calmodulin isoforms deduced from the sequences of cDNA clones. Plant Physiol. 96, 1196-1202 https://doi.org/10.1104/pp.96.4.1196
  29. Nagao, R.T., Goekjian, V.H., Hong, J.C., and Key, J.L. (1993). Identification of protein-binding DNA sequences in an auxinregulated gene of soybean. Plant Mol. Biol. 21, 1147-1162 https://doi.org/10.1007/BF00023610
  30. O'Neil, K.T., and DeGardo, W.F. (1990). How calmodulin binds its targets: sequence independent recognition of amphiphilic $\alpha$- helices. Trends Biochem. Sci. 15, 59-64 https://doi.org/10.1016/0968-0004(90)90177-D
  31. Park, C.Y., Heo, W.D., Yoo, J.H., Lee, J.H., Kim, M.C., Chun, H.J., Moon, B.C., Kim, I.H., Park, H.C., Choi, M.S., et al. (2004a). Pathogenesis-related gene expression by specific calmodulin isoforms is dependent on NIM1, a key regulator of systemic acquired resistance. Mol. Cells 18, 207-213
  32. Park, H.C., Kim, M.L., Kang, Y.H., Jeon, J.M., Yoo, J.H., Kim, M.C., Park, C.Y., Jeong, J.C., Moon, B.C., Lee, J.H., et al. (2004b). Pathogen- and NaCl-induced expression of the p`~jJQ promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol. 135, 2150-2161 https://doi.org/10.1104/pp.104.041442
  33. Park, H.C., Kim, M.L., Lee, S.M., Bahk, J.D., Yun, D.-J., Lim, C.O., Hong, J.C., Lee, S.Y., Cho, M.J., and Chung, W.S. (2007). Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter. Nucleic Acids Res. 35, 3612-3623 https://doi.org/10.1093/nar/gkm273
  34. Potenza, C., Aleman, L., and Sengupta-Gopalan, C. (2004). Targeting transgene expression in research, agricultural, and environmental applications: promoters used in plant transformation. In Vitro Cell. Dev. Biol. Plant 40, 1-22
  35. Roberts, D.M., and Harmon, A.C. (1992). Calcium-modulated proteins: Targets of intracellular calcium signals in higher plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43, 375-414 https://doi.org/10.1146/annurev.pp.43.060192.002111
  36. Snedden, W.A., and Fromm, H. (2001). Calmodulin as a versatile calcium signal transducer in plants. New Phytol. 151, 35-66 https://doi.org/10.1046/j.1469-8137.2001.00154.x
  37. Szymanski, D.B., Liao, B., and Zielinski, R.E. (1996). Calmodulin isoforms differentially enhance the binding of cauliflower nuclear proteins and recombinant TGA3 to a region derived from the Arabidopsis Cam-3 promoter. Plant Cell 8, 1069-1077 https://doi.org/10.1105/tpc.8.6.1069
  38. Takezawa, D., Liu, Z.H., An, G., and Poovaiah, B.W. (1995). Calmodulin gene family in potato: developmental and touchinduced expression of the mRNA encoding a novel isoform. Plant Mol. Biol. 27, 693-703 https://doi.org/10.1007/BF00020223
  39. Yamakawa, H., Mitsuhara, I., Ito, N., Seo, S., Kamada, H., and Ohashi, Y. (2001). Transcriptionally and post-transcriptionally regulated response of 13 calmodulin genes to tobacco mosaic virus-induced cell death and wounding in tobacco plant. Eur. J. Biochem. 268, 3916-3929 https://doi.org/10.1046/j.1432-1327.2001.02301.x
  40. Yang, T., Segal, G., Abbo, S., Feldman, M., and Fromm, H. (1996). Characterization of the calmodulin gene family in wheat: structure, chromosomal location, and evolutionary aspects. Mol. Gen. Genet. 252, 684-694 https://doi.org/10.1007/BF02173974
  41. Yoo, J.H., Park, C.Y., Kim, J.C., Heo, W.D., Cheong, M.S., Park, H.C., Kim, M.C., Moon, B.C., Choi, M.S., Kang, Y.H., et alK (2005). Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J. Biol. Chem. 280, 3697-3706 https://doi.org/10.1074/jbc.M408237200
  42. Zielinski, R.E. (2002). Characterization of three new members of the Arabidopsis thaliana calmodulin gene family: conserved and highly diverged members of the gene family functionally complement a yeast calmodulin null. Planta 214, 446-455 https://doi.org/10.1007/s004250100636

Cited by

  1. Silencing of NbCEP1 Encoding a Chloroplast Envelope Protein Containing 15 Leucine-Rich-Repeats Disrupts Chloroplast Biogenesis in Nicotiana benthamiana vol.29, pp.2, 2009, https://doi.org/10.1007/s10059-010-0011-5
  2. Identification of a new 130 bp cis -acting element in the TsVP1 promoter involved in the salt stress response from Thellungiella halophila vol.10, pp.None, 2009, https://doi.org/10.1186/1471-2229-10-90
  3. The solution structure of the Mg2+ form of soybean calmodulin isoform 4 reveals unique features of plant calmodulins in resting cells : Solution Structure of Mg2+ -Bound sCaM4 N- vol.19, pp.3, 2009, https://doi.org/10.1002/pro.325
  4. Identification and molecular properties of SUMO-binding proteins in Arabidopsis vol.32, pp.2, 2009, https://doi.org/10.1007/s10059-011-2297-3
  5. Rice Blast Management Through Host-Plant Resistance: Retrospect and Prospects vol.1, pp.1, 2009, https://doi.org/10.1007/s40003-011-0003-5
  6. Abiotic stress responses in plants: roles of calmodulin-regulated proteins vol.6, pp.None, 2015, https://doi.org/10.3389/fpls.2015.00809
  7. A novel cis-acting element in the GmERF3 promoter contributes to inducible gene expression in soybean and tobacco after wounding vol.35, pp.2, 2009, https://doi.org/10.1007/s00299-015-1885-7
  8. Divergent Soybean Calmodulins Respond Similarly to Calcium Transients: Insight into Differential Target Regulation vol.8, pp.None, 2009, https://doi.org/10.3389/fpls.2017.00208
  9. Overexpression of CsCaM3 Improves High Temperature Tolerance in Cucumber vol.9, pp.None, 2009, https://doi.org/10.3389/fpls.2018.00797