• Title/Summary/Keyword: transcription activator

Search Result 303, Processing Time 0.025 seconds

No excessive mutations in transcription activator-like effector nuclease-mediated α-1,3-galactosyltransferase knockout Yucatan miniature pigs

  • Choi, Kimyung;Shim, Joohyun;Ko, Nayoung;Park, Joonghoon
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.360-372
    • /
    • 2020
  • Objective: Specific genomic sites can be recognized and permanently modified by genome editing. The discovery of endonucleases has advanced genome editing in pigs, attenuating xenograft rejection and cross-species disease transmission. However, off-target mutagenesis caused by these nucleases is a major barrier to putative clinical applications. Furthermore, off-target mutagenesis by genome editing has not yet been addressed in pigs. Methods: Here, we generated genetically inheritable α-1,3-galactosyltransferase (GGTA1) knockout Yucatan miniature pigs by combining transcription activator-like effector nuclease (TALEN) and nuclear transfer. For precise estimation of genomic mutations induced by TALEN in GGTA1 knockout pigs, we obtained the whole-genome sequence of the donor cells for use as an internal control genome. Results: In-depth whole-genome sequencing analysis demonstrated that TALEN-mediated GGTA1 knockout pigs had a comparable mutation rate to homologous recombination-treated pigs and wild-type strain controls. RNA sequencing analysis associated with genomic mutations revealed that TALEN-induced off-target mutations had no discernable effect on RNA transcript abundance. Conclusion: Therefore, TALEN appears to be a precise and safe tool for generating genomeedited pigs, and the TALEN-mediated GGTA1 knockout Yucatan miniature pigs produced in this study can serve as a safe and effective organ and tissue resource for clinical applications.

A One-Step System for Convenient and Flexible Assembly of Transcription Activator-Like Effector Nucleases (TALENs)

  • Zhao, Jinlong;Sun, Wenye;Liang, Jing;Jiang, Jing;Wu, Zhao
    • Molecules and Cells
    • /
    • v.39 no.9
    • /
    • pp.687-691
    • /
    • 2016
  • Transcription activator-like effector nucleases (TALENs) are powerful tools for targeted genome editing in diverse cell types and organisms. However, the highly identical TALE repeat sequences make it challenging to assemble TALEs using conventional cloning approaches, and multiple repeats in one plasmid are easily catalyzed for homologous recombination in bacteria. Although the methods for TALE assembly are constantly improving, these methods are not convenient because of laborious assembly steps or large module libraries, limiting their broad utility. To overcome the barrier of multiple assembly steps, we report a one-step system for the convenient and flexible assembly of a 180 TALE module library. This study is the first demonstration to ligate 9 mono-/dimer modules and one circular TALEN backbone vector in a one step process, generating 9.5 to 18.5 repeat sequences with an overall assembly rate higher than 50%. This system makes TALEN assembly much simpler than the conventional cloning of two DNA fragments because this strategy combines digestion and ligation into one step using circular vectors and different modules to avoid gel extraction. Therefore, this system provides a convenient tool for the application of TALEN-mediated genome editing in scientific studies and clinical trials.

Regulation of signal transducer and activator of transcription 3 activation by dual-specificity phosphatase 3

  • Kim, Ba Reum;Ha, Jain;Kang, Eunjeong;Cho, Sayeon
    • BMB Reports
    • /
    • v.53 no.6
    • /
    • pp.335-340
    • /
    • 2020
  • Since cancer is the leading cause of death worldwide, there is an urgent need to understand the mechanisms underlying cancer progression and the development of cancer inhibitors. Signal transducer and activator of transcription 3 (STAT3) is a major transcription factor that regulates the proliferation and survival of various cancer cells. Here, dual-specificity phosphatase 3 (DUSP3) was identified as a regulator of STAT3 based on an interaction screening performed using the protein tyrosine phosphatase library. DUSP3 interacted with the C-terminal domain of STAT3 and dephosphorylated p-Y705 of STAT3. In vitro dephosphorylation assay revealed that DUSP3 directly dephosphorylated p-STAT3. The suppressive effects of DUSP3 on STAT3 were evaluated by a decreased STAT3-specific promoter activity, which in turn reduced the expression of the downstream target genes of STAT3. In summary, DUSP3 downregulated the transcriptional activity of STAT3 via dephosphorylation at Y705 and also suppressed the migratory activity of cancer cells. This study demonstrated that DUSP3 inhibits interleukin 6 (IL-6)/STAT3 signaling and is expected to regulate cancer development. Novel functions of DUSP3 discovered in IL-6/STAT3 signaling regulation would help expand the understanding of cancer development mechanisms.

Ventx1.1 competes with a transcriptional activator Xcad2 to regulate negatively its own expression

  • Kumar, Shiv;Umair, Zobia;Kumar, Vijay;Lee, Unjoo;Choi, Sun-Cheol;Kim, Jaebong
    • BMB Reports
    • /
    • v.52 no.6
    • /
    • pp.403-408
    • /
    • 2019
  • Dorsoventral patterning of body axis in vertebrate embryo is tightly controlled by a complex regulatory network of transcription factors. Ventx1.1 is known as a transcriptional repressor to inhibit dorsal mesoderm formation and neural differentiation in Xenopus. In an attempt to identify, using chromatin immunoprecipitation (ChIP)-Seq, genome-wide binding pattern of Ventx1.1 in Xenopus gastrulae, we observed that Ventx1.1 associates with its own 5'-flanking sequence. In this study, we present evidence that Ventx1.1 binds a cis-acting Ventx1.1 response element (VRE) in its own promoter, leading to repression of its own transcription. Site-directed mutagenesis of the VRE in the Ventx1.1 promoter significantly abrogated this inhibitory autoregulation of Ventx1.1 transcription. Notably, Ventx1.1 and Xcad2, an activator of Ventx1.1 transcription, competitively co-occupied the VRE in the Ventx1.1 promoter. In support of this, mutation of the VRE down-regulated basal and Xcad2-induced levels of Ventx1.1 promoter activity. In addition, overexpression of Ventx1.1 prevented Xcad2 from binding to the Ventx1.1 promoter, and vice versa. Taken together, these results suggest that Ventx1.1 negatively regulates its own transcription in competition with Xcad2, thereby fine-tuning its own expression levels during dorsoventral patterning of Xenopus early embryo.

The Heterochromatin-1 Phosphorylation Contributes to TPA-Induced AP-1 Expression

  • Choi, Won Jun
    • Biomolecules & Therapeutics
    • /
    • v.22 no.4
    • /
    • pp.308-313
    • /
    • 2014
  • Activator protein-1 (AP-1) is an inducible transcription factor that contributes to the generation of chronic inflammation in response to oxidative and electrophilic stress. Previous studies have demonstrated that the PI3K/Akt1 pathway plays an important role in the transcriptional regulation of AP-1 expression. Although the histone post-translational modifications (PTMs) are assumed to affect the AP-1 transcriptional regulation by the PI3K/Akt pathway, the detailed mechanisms are completely unknown. In the present study, we show that heterochromatin 1 gamma ($HP1{\gamma}$) plays a negative role in TPA-induced c-Jun and c-Fos expression. We show that TPA-induced Akt1 directly phosphorylates $HP1{\gamma}$, abrogates its suppressive function and increases the interaction between histone H3 and 14-3-$3{\varepsilon}$. Collectively, these our data illustrate that the activation of PI3K/Akt pathway may play a permissive role in the recruitment of histone readers or other coactivators on the chromatin, thereby affecting the degree of AP-1 transcription.

Sp1 Decoy Oligodeoxynucleotides Inhibit Serum-induced Mesangial Cell Proliferation (Sp1 Decoy Oligodeoxynucleotides에 의한 사구체 혈관간세포 증식억제 효과)

  • Chae Young Mi;Kim Sung Young;Park Kwan Kyu;Chang Young Chae
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.335-340
    • /
    • 2004
  • Mesangial expansion caused by cell proliferation and glomerular extracellular matrix accumulation is one of the earliest renal abnormalties observed at the onset of hyperglycemia in diabetes mellitus. Transcription factor Sp1 is implicated in the transcriptional regulation of a wide range of genes participating in cell proliferation, and is assumed to play an essential role in mesangial expansion, transforming growth factor (TGF)-$\beta$1, plasminogen activator inhibitor (PAI)-1. We have generated a phosphorothioated double-stranded Sp1-decoy oligodeoxynucleotide that effectively blocks Sp1 binding to the promoter region for transcriptional regulation of TGF-$\beta$1 and PAI-1. The Sp1 decoy oligodeoxynucleotide suppressed transcription of these cytokines and proliferation of primary rat mesangial cells in response to serum stimulation. These results suggest that the Sp1 decoy oligodeoxynucleotide could bea powerful tool in preventing the pathogenesis of renal hypertrophy.

MOLECULAR CLONING OF CHICKEN INTERFERON-GAMMA (닭 인터페론 유전자의 클로닝에 관한 연구)

  • ;Hyun Lillehoj
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 1999.11a
    • /
    • pp.34-50
    • /
    • 1999
  • A cDNA encoding chicken interferon-gamma (chIFN-${\gamma}$) was amplified from P34, a CD4$^{+}$ T-cell hybridoma by reverse transcription-polymerase chain reaction (RT-PCR) and cloned into pUC18. THe sequences of cloned PCR products were determined to confirm the correct cloning. Using this cDNA as probe, chicken genomic library from White Leghorn spleen was screened. Phage clones harboring chicken interferon-gamma (chIFN-${\gamma}$) were isolated and their genomic structure elucidated. The chIFN-${\gamma}$ contains 4 exons and 3 introns spanning over 14 kb, and follows the GT/AG rule for correct splicing at the exon/intron boundaries. The four exons encode 41, 26, 57 and 40 amino acids, respectively, suggesting that the overall structure of IFN-${\gamma}$ is evolutionairly conserved in mammalian and avian species. The 5’-untranslated region and signal sequences are located in exon 1. Several AT-rich sequences located in the fourth exon may indicate a role in mRNA turnover. The 5’-flanking region contains sequences homologous to the potential binding sites for the mammalian transcription factors, activator protein-1(AP-1) activator protein-2(AP-2) cAMP-response element binding protein(CREB), activating transcription factor(ATF), GATA-binding fator(GATA), upstream stimulating factor(USF), This suggests that the mechanisms underlying transcriptional regulation of chicken and mammalian IFN-${\gamma}$ genes may be similar.r.

  • PDF

Signal Transducer and Activator of Transcription 3 - A Promising Target in Colitis-Associated Cancer

  • Pandurangan, Ashok Kumar;Esa, Norhaizan Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.551-560
    • /
    • 2014
  • Colorectal cancer (CRC) is the third most common malignancy and fourth most common cause of cancer mortality worldwide. Untreated chronic inflammation in the intestine ranks among the top three high-risk conditions for colitis-associated colorectal cancer (CAC). Signal Transducer and Activator of Transcription 3 (STAT3) protein is a member of the STAT family of transcription factors often deregulated in CRC. In this review, we try to emphasize the critical role of STAT3 in CAC as well as the crosstalk of STAT3 with inflammatory cytokines, nuclear factor (NF)-${\kappa}B$, PI3K/Akt, Mammalian Target of Rapamycin (mTOR), Notch, $Wnt/{\beta}$-catenin and microRNA (MiR) pathways. STAT3 is considered as a primary drug target to treat CAC in humans and rodents. Also we updated the findings for inhibitors of STAT3 with regard to effects on tumorigenesis. This review will hopefully provide insights on the use of STAT3 as a therapeutic target in CAC.

Porphyromonas gingivalis lipopolysaccharide stimulates vascular smooth muscle cell migration through signal transducer and activator of transcription 3-mediated matrix metalloproteinase-9 expression

  • Kim, Yeon;Park, Joo-Yeon;Park, Hyun-Joo;Kim, Mi-Kyoung;Kim, Yong-Il;Bae, Soo-Kyung;Kim, Hyung Joon;Bae, Moon-Kyoung
    • International Journal of Oral Biology
    • /
    • v.44 no.1
    • /
    • pp.20-26
    • /
    • 2019
  • Periodontal diseases have been associated with the development of cardiovascular diseases. Accumulating evidences have indicated that Porphyromonas gingivalis, a major periodontopathic pathogen, plays a critical role in the pathogenesis of atherosclerosis. In the present study, we demonstrated that P. gingivalis lipopolysaccharide (LPS) increases the mRNA and protein expression of matrix metalloproteinase-9 (MMP-9) in rat vascular smooth muscle cells. We showed that the MMP-9 expression induced by P. gingivalis LPS is mediated by the activation of signal transducer and activator of transcription 3 (STAT3) in vascular smooth muscle cells. Furthermore, the inhibition of STAT3 activity reduced P. gingivalis LPS-induced migration of vascular smooth muscle cells. Overall, our findings indicate that P. gingivalis LPS stimulates the migration of vascular smooth muscle cells via STAT3-mediated MMP-9 expression.

Histone deacetylases inhibitor and RAD51 recombinase increase transcription activator-like effector nucleases-mediated homologous recombination on the bovine β-casein gene locus

  • Park, Da Som;Kim, Se Eun;Koo, Deog-Bon;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1023-1033
    • /
    • 2020
  • Objective: The efficiency of the knock-in process is very important to successful gene editing in domestic animals. Recently, it was reported that transient loosening of the nucleosomal folding of transcriptionally inactive chromatin might have the potential to enhance homologous recombination efficiency. The objective of this study was to determine whether histone deacetylases (HDAC) inhibitor and RAD51 recombinase (RAD51) expression were associated with increased knock-in efficiency on the β-casein (bCSN2) gene locus in mammary alveolar-large T antigen (MAC-T) cells using the transcription activator-like effector nucleases (TALEN) system. Methods: MAC-T cells were treated with HDAC inhibitors, valproic acid, trichostatin A, or sodium butyrate for 24 h, then transfected with a knock-in vector, RAD51 expression vector and TALEN to target the bCSN2 gene. After 3 days of transfection, the knock-in efficiency was confirmed by polymerase chain reaction and DNA sequencing of the target site. Results: The level of HDAC 2 protein in MAC-T cells was decreased by treatment with HDAC inhibitors. The knock-in efficiency in MAC-T cells treated with HDAC inhibitors was higher than in cells not treated with inhibitors. However, the length of the homologous arm of the knock-in vector made no difference in the knock-in efficiency. Furthermore, DNA sequencing confirmed that the precision of the knock-in was more efficient in MAC-T cells treated with sodium butyrate. Conclusion: These results indicate that chromatin modification by HDAC inhibition and RAD51 expression enhanced the homologous recombination efficiency on the bCSN2 gene locus in MAC-T cells.