DOI QR코드

DOI QR Code

A One-Step System for Convenient and Flexible Assembly of Transcription Activator-Like Effector Nucleases (TALENs)

  • Zhao, Jinlong (Innovative Cellular Therapeutics Co., Ltd.) ;
  • Sun, Wenye (Innovative Cellular Therapeutics Co., Ltd.) ;
  • Liang, Jing (Innovative Cellular Therapeutics Co., Ltd.) ;
  • Jiang, Jing (Innovative Cellular Therapeutics Co., Ltd.) ;
  • Wu, Zhao (Innovative Cellular Therapeutics Co., Ltd.)
  • Received : 2016.06.07
  • Accepted : 2016.08.08
  • Published : 2016.09.30

Abstract

Transcription activator-like effector nucleases (TALENs) are powerful tools for targeted genome editing in diverse cell types and organisms. However, the highly identical TALE repeat sequences make it challenging to assemble TALEs using conventional cloning approaches, and multiple repeats in one plasmid are easily catalyzed for homologous recombination in bacteria. Although the methods for TALE assembly are constantly improving, these methods are not convenient because of laborious assembly steps or large module libraries, limiting their broad utility. To overcome the barrier of multiple assembly steps, we report a one-step system for the convenient and flexible assembly of a 180 TALE module library. This study is the first demonstration to ligate 9 mono-/dimer modules and one circular TALEN backbone vector in a one step process, generating 9.5 to 18.5 repeat sequences with an overall assembly rate higher than 50%. This system makes TALEN assembly much simpler than the conventional cloning of two DNA fragments because this strategy combines digestion and ligation into one step using circular vectors and different modules to avoid gel extraction. Therefore, this system provides a convenient tool for the application of TALEN-mediated genome editing in scientific studies and clinical trials.

Keywords

References

  1. Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A., and Bonas, U. (2009). Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509-1512. https://doi.org/10.1126/science.1178811
  2. Cermak, T., Doyle, E.L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J.A., Somia, N.V., Bogdanove, A.J., and Voytas, D.F. (2011). Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39, e82. https://doi.org/10.1093/nar/gkr218
  3. Ding, Q., Lee, Y.K., Schaefer, E.A., Peters, D.T., Veres, A., Kim, K., Kuperwasser, N., Motola, D.L., Meissner, T.B., Hendriks, W.T., et al. (2013). A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 12, 238-251. https://doi.org/10.1016/j.stem.2012.11.011
  4. Engler, C., Kandzia, R., and Marillonnet, S. (2008). A one pot, one step, precision cloning method with high throughput capability. PLoS One 3, e3647. https://doi.org/10.1371/journal.pone.0003647
  5. Engler, C., Gruetzner, R., Kandzia, R., and Marillonnet, S. (2009). Golden gate shuffling: a one-pot DNA shuffling method based on type IIs restriction enzymes. PLoS One 4, e5553. https://doi.org/10.1371/journal.pone.0005553
  6. Kim, Y., Kweon, J., Kim, A., Chon, J.K., Yoo, J.Y., Kim, H.J., Kim, S., Lee, C., Jeong, E., Chung, E., et al. (2013). A library of TAL effector nucleases spanning the human genome. Nat. Biotechnol. 31, 251-258. https://doi.org/10.1038/nbt.2517
  7. Li, T., Huang, S., Zhao, X., Wright, D.A., Carpenter, S., Spalding, M.H., Weeks, D.P., and Yang, B. (2011). Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. 39, 6315-6325. https://doi.org/10.1093/nar/gkr188
  8. Li, L., Piatek, M.J., Atef, A., Piatek, A., Wibowo, A., Fang, X., Sabir, J.S., Zhu, J.K., and Mahfouz, M.M. (2012). Rapid and highly efficient construction of TALE-based transcriptional regulators and nucleases for genome modification. Plant Mol. Biol. 78, 407-416. https://doi.org/10.1007/s11103-012-9875-4
  9. Moscou, M.J., and Bogdanove, A.J. (2009). A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501. https://doi.org/10.1126/science.1178817
  10. Morbitzer, R., Elsaesser, J., Hausner, J., and Lahaye, T. (2011). Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res. 39, 5790-5799. https://doi.org/10.1093/nar/gkr151
  11. Takahashi, K., and Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663-676. https://doi.org/10.1016/j.cell.2006.07.024
  12. Weber, E., Gruetzner, R., Werner, S., Engler, C. and Marillonnet, S. (2011). Assembly of designer TAL effectors by Golden Gate cloning. PLoS One 6, e19722. https://doi.org/10.1371/journal.pone.0019722
  13. Zhang, F., Cong, L., Lodato, S., Kosuri, S., Church, G.M., and Arlotta, P. (2011). Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149-153. https://doi.org/10.1038/nbt.1775
  14. Zhang, Z., Li, D., Xu, H., Xin, Y., Zhang, T., Ma, L., Wang, X., and Chen, Z. (2013). A simple and efficient method for assembling TALE protein based on plasmid library. PLoS One 8, e66459. https://doi.org/10.1371/journal.pone.0066459

Cited by

  1. A Transcription Activator-Like Effector Tal7 of Xanthomonas oryzae pv. oryzicola Activates Rice Gene Os09g29100 to Suppress Rice Immunity vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-04800-8
  2. The therapeutic landscape of HIV-1 via genome editing vol.14, pp.1, 2017, https://doi.org/10.1186/s12981-017-0157-8
  3. Recent advances of genome editing and related technologies in China vol.27, pp.7, 2016, https://doi.org/10.1038/s41434-020-0181-5
  4. A most formidable arsenal: genetic technologies for building a better mouse vol.34, pp.19, 2016, https://doi.org/10.1101/gad.342089.120