• 제목/요약/키워드: trajectory tracking

검색결과 703건 처리시간 0.026초

로봇 매니퓰레이터의 궤적 추종을 위한 강인한 적응제어기의 설계 및 구현 (Design of a Robust Adaptive Controller and Its Implementation on Robot Manipulators for Trajectory Tracking)

  • 길진수;한상완;조원영;홍석교
    • 제어로봇시스템학회논문지
    • /
    • 제4권4호
    • /
    • pp.479-486
    • /
    • 1998
  • In this paper, the design and the implementation of a robust adaptive controller for trajectory tracking of robot manipulator is presented. The proposed control scheme ensures that tracking errors are converged to some boundaries in the presence of a state-dependent input disturbances as well as the ideal case without any prior knowledge of the robot manipulator parameters. The 3 DOF robot manipulator including actuator dynamics is used for the implementation of the proposed control scheme. The experimental results show that the proposed control scheme is valid for trajectory tracking of the robot manipulator.

  • PDF

A Passive Multiple Trailer System with Off-axle Hitching

  • Lee, Jae-Hyoung;Woojin Chung;Kim, Munsnng;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권3호
    • /
    • pp.289-297
    • /
    • 2004
  • This paper deals with the design and control of passive multiple trailer systems for practical applications. Due to the cost and complexity of the trailer mechanism, passive systems are preferred to active systems in this research. The design and control objective is to minimize the trajectory tracking errors occurring in passive multiple trailers. Three sorts of passive trailer systems, off-hooked, direct-hooked, and three-point, are discussed in this paper. Trajectory tracking performance and stability issues under constant curvature reference trajectories are investigated for these three types. As well, various simulations and experiments have been performed for each type. It is shown that the proposed off-hooked trailer system produces a tracking performance that is superior to the others.

Neural Network Compensation for Impedance Force Controlled Robot Manipulators

  • Jung, Seul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제14권1호
    • /
    • pp.17-25
    • /
    • 2014
  • This paper presents the formulation of an impedance controller for regulating the contact force with the environment. To achieve an accurate force tracking control, uncertainties in both robot dynamics and the environment require to be addressed. As part of the framework of the proposed force tracking formulation, a neural network is introduced at the desired trajectory to compensate for all uncertainties in an on-line manner. Compensation at the input trajectory leads to a remarkable structural advantage in that no modifications of the internal force controllers are required. Minimizing the objective function of the training signal for a neural network satisfies the desired force tracking performance. A neural network actually compensates for uncertainties at the input trajectory level in an on-line fashion. Simulation results confirm the position and force tracking abilities of a robot manipulator.

공압인공근육로봇의 궤적추종의 적응제어 (Adaptive Control for Trajectory Tracking of a Manipulator with Pneumatic Artificial Muscle Actuators)

  • 박형욱;박노철;양현석;박영필
    • 한국정밀공학회지
    • /
    • 제14권5호
    • /
    • pp.100-107
    • /
    • 1997
  • A pneumatic artificial muscle type of actuator, which acts similar to human muscle, is developed recently. In this paper, an adaptive controller is presented for the trajectory tracking problem of a two-degree- of-freedom manipulator using two pairs of pneumatic artificial muscle actuators. Due to the nonlinearity and the uncertainty on the dynamics of the actuator, it is difficult to make the effective control schemes of this system. By the adaptive control law which inclueds a nonlinear "feedforward" term compensating paramet- ric uncertainties in addition to P.I.D. scheme, both golbal stability of the system and convergence of the tracking error are guaranted. The effectiveness of the proposed control method for the manipulator using this actuator is illustrated through experiments.periments.

  • PDF

유전 알고리즘을 이용한 이동로봇의 실시간 신경회로망 제어 (The Real-time Neural Network Control of Mobile Robot Based-on Genetic Algorithm)

  • 정경규;김종수;이우송;이명재;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.561-566
    • /
    • 2002
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF

유전 알고리즘을 이용한 이동로봇의 실시간 신경회로망 제어 (The Real-time Neural Network Control of Mobile Robot Based-on Genetic Algorithm)

  • 정경규;정동연;이우송;김경년;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 추계학술대회(한국공작기계학회)
    • /
    • pp.146-151
    • /
    • 2001
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF

제네틱 알고리즘을 이용한 이동로봇의 지능제어기 설계 (Design of an Intelligent Controller of Mobile Robot Using Genetic Algorithm)

  • 정동연;김종수;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2003년도 추계학술대회
    • /
    • pp.207-212
    • /
    • 2003
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF

유전자 알고리즘을 이용한 이동로봇의 지능제어 (Intelligent Controller of Mobile Robot Using Genetic Algorithm)

  • 정동연;김홍래;한성현
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 추계학술대회 논문집
    • /
    • pp.181-186
    • /
    • 2004
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF

강인.적응제어 방식에 의한 이동로봇의 동력학 제어 (Dynamic control of mobile robots using a robust.adaptive control method)

  • 남재호;백승민;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.449-452
    • /
    • 1996
  • In this paper, a robust.adaptive control scheme is presented for precise trajectory tracking of nonholonomic mobile robots. In the controller, a set of desired trajectory is defined and used in constructing the control input which constitutes the main part of the proposed controller. The stable operating characteristics such as precise trajectory tracking, parameter estimation, disturbance suppression, tec., are shown through experiments as well as computer simulation.

  • PDF

인공 고무 근육을 이용한 로보트 메니퓨레이터의 선형 궤도 추적 제어 (Trajectory tracking controls for a robot manipulator with artificial muscles)

  • 진상호;;;이석규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.642-646
    • /
    • 1992
  • Trajectory tracking control problems are described for a two-link robot manipulator with artificial rubber muscle actuators. Under the assumption that the so-called independent joint control is applied to the control system, the dynamic model for each link is identified as a linear second-order system with time-lag by the step response. Two control laws such as the feedforward and the computed torque control methods, are experimentally applied for controlling the circular trajectory of an actual robot manipulator.

  • PDF