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Abstract

This paper presents the formulation of an impedance controller for regulating the contact
force with the environment. To achieve an accurate force tracking control, uncertainties in
both robot dynamics and the environment require to be addressed. As part of the framework
of the proposed force tracking formulation, a neural network is introduced at the desired
trajectory to compensate for all uncertainties in an on-line manner. Compensation at the input
trajectory leads to a remarkable structural advantage in that no modifications of the internal
force controllers are required. Minimizing the objective function of the training signal for a
neural network satisfies the desired force tracking performance. A neural network actually
compensates for uncertainties at the input trajectory level in an on-line fashion. Simulation
results confirm the position and force tracking abilities of a robot manipulator.
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1. Introduction

Robot tasks have become increasingly sophisticated and complicated as our desire for robots
has grown. Robots are gradually being used in our daily lives in more varied ways. Through
their ability to manipulate objects, service robots are now required to interact more frequently
with humans, beyond simple house cleaning chores. The corresponding technologies are
necessary for robots to perform more challenging and sophisticated tasks including not only
position control but also force control for two-arm manipulation.

Indeed, in the near future, service robots should be able to handle objects to satisfy the
specifications of their given tasks and to interact and cooperate with humans in a natural
manner [1]. Robot interaction with humans and the environment requires active force control
techniques.

In robot research communities, force control is a sophisticated control methodology for
robots interacting with their environment, including humans. To achieve successful force
tracking performances, several problems need to be solved a priori. First, a direct force
tracking capability for following the desired force command is required for the formulation of
a control law. Second, accurate position tracking control should be achieved by compensating
for uncertainties in robot dynamics. Third, uncertainties in estimating the environment, such
as stiffness and location, should be properly addressed.

Various control algorithms have been proposed to alleviate the aforementioned problems of
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force control tasks. From the pioneering works of impedance
control and hybrid force control algorithms, to intelligent force
control algorithms, many researches have been presented on this
subject [2-5], and force control algorithms have been modified
for an improved performance [6-10].

The trend of merging the concept of intelligence into a system
has yielded methods of intelligent force control. Neural net-
work, which is known to be an intelligent tool, is utilized along
with robot controllers to improve the tracking performance [11-
22]. Neural networks are well known for their nonlinear map-
ping, adaptation, and learning capabilities, and many successful
results have been reported in the literature. Fuzzy logic is also
a well-known intelligent tool that interprets human expressions
for a machine system. Although fuzzy logic controllers are
considerably practical and can be easily implemented through
hardware, fuzzy logic suffers from the setting of optimal fuzzy
rules. Determining the optimal fuzzy rules is a time-consuming
process [23].

In a force control framework, neural network algorithms have
been used for industrial manipulators to address both unknown
objects and unknown robot dynamics [11-17]. A combined
control structure for the both aH∞control method and a neural
network has been proposed [18]. In addition, to accelerate the
advantages of fuzzy logic and neural networks, a combined
structure called a neuro-fuzzy control scheme was proposed
[19, 20, 24].

In our previous research [11], a neural network was used
for impedance control formulation to nullify any uncertainties.
Experimental studies on regulating the contact forces for an
x-y table robot have shown that a neural network performs con-
siderably well for force tracking tasks in an on-line manner.
Neural networks compensate for uncertainties at the control
input level. This has led to modifications of the internal force
control structure. In reality, however, many robots were de-
signed for position control using sealed control structures that
do not allow modifications of the control algorithms.

In this paper, a different structure for the use of a neural
network in a force-controlled robot manipulator [11, 13] is
proposed. Here, a neural network is used to compensate for
all uncertainties at the input trajectory level. This scheme is
known as reference compensation technique used for the po-
sition control of robot manipulators [25, 26]. This structure
provides a remarkable advantage from a structural point of view
in that it does not require a modification of the pre-installed
controllers in many applications used. Extensive simulations
were conducted to show the feasibility of the proposed control

method.

2. Review of Impedance Control

A dynamic equation of an n degree-of-freedom robot manipula-
tor in the joint space coordinates can be given by

D(q)
..
q+C(q,

.
q)

.
q+G(q) = τ − τe, (1)

where vectors q, q̇ and
..
qare the n x 1 joint angle, n x 1 joint an-

gular velocity, and n x 1 joint angular acceleration, respectively;
D(q)is the n × n symmetric positive definite inertia matrix;
C(q, q̇)q̇ is the n × 1 vector of the Coriolis and centrifugal
torques; G(q) is the n × 1 gravitational torque; τ is the n x 1
vector of the actuator joint torque; and τe is the n x 1 vector of
the external disturbance joint torque.

Denoting h = C(q,
.
q)

.
q+G(q) can simplify Eq. (1) as

D(q)
..
q+h = τ − τe. (2)

The Jacobian relationship between the joint velocity and Carte-
sian velocity allows the development of a robot dynamic equa-
tion model in the Cartesian space. The Jacobian relationship
for the acceleration is

..
q(t) = J−1(

..

X −
.

J
.
q). (3)

Substituting (3) in (2) yields the following Cartesian dynamic
equation:

D∗
..

X +h∗ = F − Fe, (4)

where D∗ = JT−1

DJ−1, h∗ = JT−1

h −D∗
.

J J−1
.

X , Fe is
the external force, and F is the control input force.

The impedance force control method regulates the contact
force by correctly selecting the impedance parameters [10]. The
force tracking impedance function can be given by

Fe − Fd = M
..

E+B
.

E+KE, (5)

whereE = Xe − X , Xe is the environment position, and
M,B,Kare the impedance parameters. Setting K = 0in (5)
and assuming Fe = −KeE yield a stable impedance function.

− Fd = M
..

E+B
.

E+KeE (6)

In this formulation, without knowing the exact environment
stiffnessKe, the force tracking Fe = Fd is guaranteed under a
steady state. If the environment position Xeis not accurately
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available such that X
′

e = Xe + δXe, impedance function (6)
with uncertainty can be represented as

M
..

E
′
+B

.

E
′

= Fe − Fd , (7)

whereE
′

= E+δXe, and δXeis uncertainty in the environment
position.

However, to achieve force tracking Fe = Fd by realizing the
ideal impedance function, uncertainties in robot dynamics have
to be concurrently compensated. Herein, we propose the use
of a neural network to handle the uncertainties in both robot
dynamics and the environment.

3. Neural Network Force Control

The role of a neural network is to generate signals to compensate
for uncertainties to minimize the tracking errors of position and
force control. The force control law in the Cartesian space can
be given by [9, 10]

F = D̂∗ V + ĥ∗+Fe. (8)

Further, the control input is given as

V (t) ≈
..

X(t). (9)

Based on the impedance law in (5) and (6),
..

X can be modified
by adding compensating signals from a neural network.

The position control can be written as

Vp =
..

X
d

+M−1p (Bp
.
ε+Kp(ε+ φp)), (10)

where Mp, Bp,Kpare the position control gains, and φp is the
output signal of the neural network used to compensate for
uncertainties in the position controlled direction.

The force control can be written as

Vf =
..

X
′
e +M−1(Fd +B

.

E+K(E + φf )) free space (11)

Vf =
..

X
′
e +M−1(Fd − Fe +B(

.

E+φf )) contact space,

where ε = Xd−X,Xdis the desired trajectory, φf is the output
of the neural network used for the compensation of the force
controlled direction, and V = [V T

p V
T
f ]T , where Vp indicates

the position controlled direction, and Vf is the force controlled
direction.

Substituting the control law (8) in the Cartesian robot dy-
namic Eq. (4) yields

D̂∗(V (t)−
..

X(t)) = ∆D∗
..

X +∆h∗, (12)

where ∆D∗ = D∗ − D̂∗and ∆h∗ = h∗ − ĥ∗, which are
considered to be modeling errors. Arranging (12) provides the
following closed loop error equation:

(V (t)−
..

X(t)) = D̂∗−1(∆D∗
..

X +∆h∗). (13)

The force controllable direction is considered separately by
substituting Vf of the contact in (11) in (13). We then have the
following equation:

..

X
′
e +M−1(Fd−Fe +B(

.

E
′
+φf ))−

..

X = D̂∗−1 ∆F, (14)

where the uncertainty terms are ∆F = ∆D∗
..

X +∆h∗. Thus,
Eq. (14) can be simplified as a closed loop force error equation:

M
..

E′+B
.

E
′
+ Fd − Fe +Bφf = M D̂∗−1 ∆F. (15)

Therefore, the neural network compensating signal φf can com-

pensate for those dynamic uncertainties, M
∧
D∗
−1

∆F , as

M
..

E′+B
.

E
′
+ Fd − Fe = M D̂∗−1 ∆F −Bφf . (16)

After driving a neural network to converge to zero, the neural
network output becomes equal to the dynamic uncertainty.

φf = B−1M D̂∗−1 ∆F. (17)

The desired impedance function can then be realized as
M

..

E′+B
.

E
′
+KeE = −Fd, (18)

where Fe = −KeE.
In the same manner, we can obtain the following equation

for the position controlled direction:

Mp
..
ε+Bp

.
ε+Kpε = M D̂∗−1 ∆F −Kpφp, (19)

where φp is a neural network output for the position controlled
direction. After convergence, the neural network output for the
position controlled direction becomes

φf = K−1p Mp

∧
D∗
−1

∆F. (20)

The desired position control can then be realized as
Mp

..
ε+Bp

.
ε+Kpε = 0, (21)

where Mp = Ifor a typical case.
The proposed neural network force control structure is shown

in Figure 1. There are two control parts: a compensation control
part and an impedance force control part. The robot manipu-
lator is controlled using an impedance force control method.
The compensation part is a totally separable structure from the
impedance force control part such that it can be easily separated.
The idea here is to modify the input trajectory signals to have
effects of modifying gains in the internal controller. Therefore,
next is how to drive neural network to generate compensation
signals to make tracking errors go to zero.
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Figure 1. Neural network force control structure.

4. Neural Network Learning Algorithm

Next is to design the training signal for driving the neural net-
work to satisfy the goal. Our goal is to achieve Fe = Fd in
the force controlled direction and X = Xd in the position con-
trolled direction. A neural network is trained and learned in an
on-line adaptive manner by minimizing the objective function
composed of training signals.

The learning algorithm is similar to those presented in [11,
13]. Therefore, we can determine the training signal from Eq.
(7) as

vforce = Fd − Fe. (22)

Eq. (16) then becomes

vforce = M
..

X +B
.

X +M D̂∗−1 ∆F −Bφf . (23)

where
.

X
e

=
..

Xe = 0. If the environment position profile is not

flat, good force tracking results cannot be achieved owing to
the

.

X,
..

X terms. To overcome this problem, we use a neural
network to cancel out these terms in (23).

Hence, the training signal for a neural network should be
properly designed such that the force tracking error is mini-
mized. Two separate training signals, vposition, vforce, were
designed for the position control and force control, respectively.
The training signals for vforce are obtained from Eq. (5) for
two cases: one in a free space, and the other in a contact space.

vfree =
..
e+

1

m
(b

.
e+ke+ fd) (24)

vcontact = fd − fe (25)

The objective function to be minimized can be defined as

= =
1

2
vT v, (26)

where v = [vTpositionv
T
force]

T . Employing the definition of v in
Eqs. (24) and (25) yields the gradient of as =

∂=
∂w

= [
∂v

∂w
]T v = −[

∂φ

∂w
]T v. (27)

Figure 2. Neural network structure.

The neural network output isφ = [φTp φ
T
f ]T . The back-propagation

update rule for the weights with a momentum term is

∆w(t) = η[
∂φ

∂w
]T v + α∆w(t− 1), (28)

where η is the update rate and α is the momentum coefficient.
A two-layered feed-forward neural network is used as a com-

pensator, as shown in Figure 2. The output of the hidden units
is filtered using a nonlinear function,

f(x) =
1− exp(−x)

1 + exp(−x)
, (29)

while the output units are linear. We chose six hidden neurons
for our experiments. The back propagation algorithm parameter
η was optimized, and α = 0.9 was used. In addition, weights
with small values were randomly selected.

5. Simulation Results

5.1 Simulation Setup

To validate the proposed force control algorithm, simulation
studies on a two-link robot manipulator were conducted. The
link length is 0.4 m and the weight is 5 kg for two links. Robot
dynamic uncertainties include cases in which the robot dynam-
ics model is assumed to be unknown and each joint has friction
terms. The environment was assumed to have an unknown stiff-
ness of 10,000 N/m, and the desired force was set to 20 N. The
force normal to the environment along the x axis was regulated.
The sampling time was 0.005 sec. The robot was required to
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Figure 3. Force tracking environment.
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Figure 4. Force tracking performance.

follow the environment along the y axis while regulating the
desired force along the x axis, as shown in Figure 3.

5.2 No Uncertainties in Robot Dynamics

First, the robot was required to track through an environment
with a stiffness of 10,000 N/m. The desired force was 20 N.
The force tracking results are shown in Figure 4. The position
controller gains were kp = 100 and kd = 20, and the force
controller gains were m = 1 and b = 100. From its initial
position, the robot moved slowly and made contact with the
environment at about 0.13 sec.

Without knowing the environment stiffness or the position
information, the impedance force control algorithm was suffi-
ciently robust to perform force tracking control well. Tracking
performances of x axis position and y axis sinusoidal trajectory
are shown in Figures 5 and 6, respectively.

5.3 Uncertainties in Robot Dynamics

However, when uncertainties in robot dynamics such as joint
friction and model mismatches are present, the force tracking
performance is significantly degraded, as shown in Figure 7.
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Figure 5.X axis position tracking result.
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Figure 6. Y axis position tracking result.

The position tracking results for the y axis show a notable
tracking error, as presented in Figure 8. This error should be
alleviated to achieve a better force tracking performance.

After compensating for these uncertainties in robot dynam-
ics, the force tracking performance was improved, as shown
in Figure 7. The force overshoot was reduced to within 0.5

sec. The corresponding position tracking results in Figure 8
indicate that the environment position is estimated inside the
environment. The position tracking along the y axis was also
improved by the neural network controller, as shown in Figure
9. The initial tracking errors were also quickly minimized as
the neural network learned. Figures 10 and 11 show the neu-
ral network compensation signals for the force and position
controls, respectively.

5.4 Different Environment Stiffness

The next simulation was conducted to determine the effect of
different environment stiffness. The desired force was set to
20 N. As expected, a larger force overshoot could be observed
for a stiffer environment. For a stiffness of ke = 50,000 N/m,
we obtained the largest force overshoot, as shown in Figure
12. However, it reduced quickly. For a stiffness of ke = 1,000
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Figure 7. Force tracking performance under robot dynamics uncer-
tainty.
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Figure 8. X axis position tracking results under robot dynamics
uncertainty.

0 1 2 3 4 5 6
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

time (sec)

Y
 a

x
is

 p
o
s
it
io

n
 (

m
)

Desired
NN Impedance
Impedance

Time (sec) 

Y
 a

xi
s 

p
o
si
ti
o
n
 (
m

) 

Figure 9. Y axis position tracking results under robot dynamics
uncertainty.

N/m, which is considered to be a soft environment, the force
response time was slower and a smaller force overshoot was
obtained. The force tracking performance in Figure 12 shows
that the controller is sufficiently robust to handle all cases of
environment stiffness. The force overshoot caused the robot to
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Figure 10. Neural network compensation signal for force control
direction.
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Figure 11. Neural network compensation signal for position control
direction.
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Figure 12. Force tracking results for different environments.

exert more force on the environment than desired, which may
have caused an undesirable contact with the environment.

5.5 Different Force Tracking Tasks

In the next simulation, the robot was tasked to regulate different
desired forces for the same environment stiffness of ke= 10,000
N/m. Different forces should be regulated under the same
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Figure 13. Different force tracking when ke= 10,000 N/m.

conditions. Figure 13 shows the tracking performance for each
desired force tracking task. The proposed neural controller
could handle different forces with the same controller gains
within the same environment.

6. Conclusion

When the robot used force control, its performance was greatly
affected by the robustness of the position controller. Robot
dynamics uncertainties are one of the important problems that
need to be solved in advance. Because a neural network is a
nonlinear controller, uncertainties can be compensated in terms
of not only the position controller but also the force controller.
The performance of the proposed controller was confirmed
through extensive simulations. One advantage of the proposed
control scheme is that there are no modifications required for a
pre-designed controller. Uncertainties can be compensated at
the input trajectory level, which may lead to many advantages
in real applications such as teleoperation control, haptic devices,
and other nonlinear control systems. Future research will seek
advantages by applying the proposed algorithms to applications.
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