• Title/Summary/Keyword: traffic detection system

Search Result 532, Processing Time 0.027 seconds

Speeding Detection and Time by Time Visualization based on Vehicle Trajectory Data

  • Onuean, Athita;Jung, Hanmin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.593-596
    • /
    • 2018
  • The speed of vehicles has remained a significant factor that influences the severity of accidents and traffic accident rate in many parts of the world including South Korea. This behavior where drivers drive at speeds which exceed a posted safe threshold is known as 'speeding'. Over the past twenty years, the Korean National Police Agency (NPA) has become aware of an increased frequency of drivers who are speeding. Therefore, fixed-type ASE systems [1] have been installed on hazardous road sections of many highways. These system monitor vehicle speeds using a camera. However, the use of ASE systems has changed the behavior of the drivers. Specifically, drivers reduce speed or avoid the route where the cameras are mounted. It is not practical to install cameras at every possible location. Therefore, it is challenging to thoroughly explore the location where speeding occurs. In view of these problems, the author of this paper designed and implemented a prototype visualization system in which point and color are used to show vehicle location and associated over-speed information. All of this information was used to create a comprehensive visualization application to show information about vehicle driving. In this paper, we present an approach detecting vehicles moving at speeds which exceed a threshold and visualizing the points those violations occur on a map. This was done using vehicle trajectory data collected in Daegu city. We propose steps for exploring the data collected from those sensors. The resulting mapping has two layers. The first layer contains the dynamic vehicle trajectory data. The second underlying layer contains the static road networks. This allows comparing the speed of vehicles on roads with the known maximum safe speed of those roads, and presents the results with a visualization tool. We also compared data about people who drive over threshold safe speeds on each road on days and weekends based on vehicle trajectories. Finally, our study suggests improved times and locations where law enforcement should use monitoring with speed cameras, and where they should be stricter with traffic law enforcement. We learned that people will drive over the speed limit at midnight more than 1.9 times as often when compared with rush hour traffic at 8 o'clock in the morning, and 4.5 times as often when compared with traffic at 7 o'clock in the evening. Our study can benefit the government by helping them select better locations for installation of speed cameras. This would ultimately reduce police labor in traffic speed enforcement, and also has the potential to improve traffic safety in Daegu city.

  • PDF

Automatic Traffic Data Collection Using Simulated Satellite Imagery (인공위성영상을 이용한 교통량측량 자동화)

  • 조우석
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.101-116
    • /
    • 1995
  • The fact that the demands on traffic data collection are imposed by economic and safety considerations raisese the question of the potential for complementing existing traffic data collection programs with satellite data. Evaluating and monitoring traffic characteristics is becoming increasingly important as worsening congestion, declining economic situations, and increasing environmental sensitivies are forcing the government and municipalities to make better use of existing roadway capacities. The present system of using automatic counters at selected points on highways works well from a temporal point of view (i.e., during a specific period of time at one location). However, the present system does not cover the spatial aspects of the entire road system (i.e., for every location during specific periods of time); the counters are employed only at points and only on selected highways. This lack of spatial coverage is due, in part, to the cost of the automatic counters systems (fixed procurement and maintenance costs) and of the personal required to deploy them. The current procedure is believed to work fairly well in the aggregate mode, at the macro level. However, at micro level, the numbers are more suspect. In addition, the statistics only work when assuming a certain homogenity among characteristics of highways in the same class, an assumption that is impossible to test whn little or no data is gathered on many of the highways for a given class. In this paper, a remote sensing system as complement of the existing system is considered and implemented. Since satellite imagery with high resolution is not available, digitized panchromatic imagery acquired from an aircraft platform is utilized for initial test of the feasibility and performance capability of remote sensing data. Different levels of imagery resolutions are evaluated in an attempt to determine what vehicle types could be classified and counted against a background of pavement types, which might be expected in panchromatic satellite imagery. The results of a systematic study with three different levels of resolutions (1m, 2m and 4m) show that the panchromat ic reflectances of vehicles and pavements would be distributed so similarly that it would be difficult to classify systematically and analytically remotely sensing vehicles on pavement within panchromatic range. Anaysis of the aerial photographs show that the shadows of the vehicles could be a cue for vehicle detection.

Experiments on An Network Processor-based Intrusion Detection (네트워크 프로세서 기반의 침입탐지 시스템 구현)

  • Kim, Hyeong-Ju;Kim, Ik-Kyun;Park, Dae-Chul
    • The KIPS Transactions:PartC
    • /
    • v.11C no.3
    • /
    • pp.319-326
    • /
    • 2004
  • To help network intrusion detection systems(NIDSs) keep up with the demands of today's networks, that we the increasing network throughput and amount of attacks, a radical new approach in hardware and software system architecture is required. In this paper, we propose a Network Processor(NP) based In-Line mode NIDS that supports the packet payload inspection detecting the malicious behaviors, as well as the packet filtering and the traffic metering. In particular, we separate the filtering and metering functions from the deep packet inspection function using two-level searching scheme, thus the complicated and time-consuming operation of the deep packet inspection function does not hinder or flop the basic operations of the In-line mode system. From a proto-type NP-based NIDS implemented at a PC platform with an x86 processor running Linux, two Gigabit Ethernet ports, and 2.5Gbps Agere PayloadPlus(APP) NP solution, the experiment results show that our proposed scheme can reliably filter and meter the full traffic of two gigabit ports at the first level even though it can inspect the packet payload up to 320 Mbps in real-time at the second level, which can be compared to the performance of general-purpose processor based Inspection. However, the simulation results show that the deep packet searching is also possible up to 2Gbps in wire speed when we adopt 10Gbps APP solution.

A Study on Algorithm for Materials Take-off Using Pothole Detection System (포트홀 감지 시스템을 이용한 보수재료량 산출 알고리즘 개발)

  • Kim, Kyungnam;Kim, Sung-Ho;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.3
    • /
    • pp.603-610
    • /
    • 2017
  • Various type of pavement deterioration such as crack, bumpy, pothole is rapidly increasing according to the accelerated environmental changes like heavy rainfall, frequent snowing, difference temperature, etc. Accident related to pothole that cause fatal traffic accidents has been increased more than five times over the next five years starting from 2008. As direct or indirect damage by pothole which caused injuries and car damages increases every year, quicker and more efficient management measures are necessary. This study presents the algorithm for materials quantity take-off. The algorithm was suggested by correlation in pothole size and area. Suggested algorithm were confirmed the validity through the 15 field survey in capital area. According to the results of survey, usually the residual materials at which 5~7 kg was generated decreased to 1~2 kg. It showed that automatic pothole detection system is expected not only to reduce materials and resources, but also to contribute to quality improvements of pavement through more accurate material take-off from the situation of constructing rely on their own judgement.

Analysis of Deep Learning Model for the Development of an Optimized Vehicle Occupancy Detection System (최적화된 차량 탑승인원 감지시스템 개발을 위한 딥러닝 모델 분석)

  • Lee, JiWon;Lee, DongJin;Jang, SungJin;Choi, DongGyu;Jang, JongWook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.146-151
    • /
    • 2021
  • Currently, the demand for vehicles from one family is increasing in many countries at home and abroad, reducing the number of people on the vehicle and increasing the number of vehicles on the road. The multi-passenger lane system, which is available to solve the problem of traffic congestion, is being implemented. The system allows police to monitor fast-moving vehicles with their own eyes to crack down on illegal vehicles, which is less accurate and accompanied by the risk of accidents. To address these problems, applying deep learning object recognition techniques using images from road sites will solve the aforementioned problems. Therefore, in this paper, we compare and analyze the performance of existing deep learning models, select a deep learning model that can identify real-time vehicle occupants through video, and propose a vehicle occupancy detection algorithm that complements the object-ident model's problems.

Driver Drowsiness Detection System using Image Recognition and Bio-signals (영상 인식 및 생체 신호를 이용한 운전자 졸음 감지 시스템)

  • Lee, Min-Hye;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.859-864
    • /
    • 2022
  • Drowsy driving, one of the biggest causes of traffic accidents every year, is accompanied by various factors. As a general method to check whether or not there is drowsiness, a method of identifying a driver's expression and driving pattern, and a method of analyzing bio-signals are being studied. This paper proposes a driver fatigue detection system using deep learning technology and bio-signal measurement technology. As the first step in the proposed method, deep learning is used to detect the driver's eye shape, yawning presence, and body movement to detect drowsiness. In the second stage, it was designed to increase the accuracy of the system by identifying the driver's fatigue state using the pulse wave signal and body temperature. As a result of the experiment, it was possible to reliably determine the driver's drowsiness and fatigue in real-time images.

Design of Network Attack Detection and Response Scheme based on Artificial Immune System in WDM Networks (WDM 망에서 인공면역체계 기반의 네트워크 공격 탐지 제어 모델 및 대응 기법 설계)

  • Yoo, Kyung-Min;Yang, Won-Hyuk;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.4B
    • /
    • pp.566-575
    • /
    • 2010
  • In recent, artificial immune system has become an important research direction in the anomaly detection of networks. The conventional artificial immune systems are usually based on the negative selection that is one of the computational models of self/nonself discrimination. A main problem with self and non-self discrimination is the determination of the frontier between self and non-self. It causes false positive and false negative which are wrong detections. Therefore, additional functions are needed in order to detect potential anomaly while identifying abnormal behavior from analogous symptoms. In this paper, we design novel network attack detection and response schemes based on artificial immune system, and evaluate the performance of the proposed schemes. We firstly generate detector set and design detection and response modules through adopting the interaction between dendritic cells and T-cells. With the sequence of buffer occupancy, a set of detectors is generated by negative selection. The detection module detects the network anomaly with a set of detectors and generates alarm signal to the response module. In order to reduce wrong detections, we also utilize the fuzzy number theory that infers the degree of threat. The degree of threat is calculated by monitoring the number of alarm signals and the intensity of alarm occurrence. The response module sends the control signal to attackers to limit the attack traffic.

Anomaly Detection Using Visualization-based Network Forensics (비정상행위 탐지를 위한 시각화 기반 네트워크 포렌식)

  • Jo, Woo-yeon;Kim, Myung-jong;Park, Keun-ho;Hong, Man-pyo;Kwak, Jin;Shon, Taeshik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.1
    • /
    • pp.25-38
    • /
    • 2017
  • Many security threats are occurring around the world due to the characteristics of industrial control systems that can cause serious damage in the event of a security incident including major national infrastructure. Therefore, the industrial control system network traffic should be analyzed so that it can identify the attack in advance or perform incident response after the accident. In this paper, we research the visualization technique as network forensics to enable reasonable suspicion of all possible attacks on DNP3 control system protocol, and define normal action based rules and derive visualization requirements. As a result, we developed a visualization tool that can detect sudden network traffic changes such as DDoS and attacks that contain anormal behavior from captured packet files on industrial control system network. The suspicious behavior in the industrial control system network can be found using visualization tool with Digital Bond packet.

Development of Lane and Vehicle Headway Direction Recognition System for Military Heavy Equipment's Safe Transport - Based on Kalman Filter and Neural Network - (안전한 군용 중장비 수송을 위한 차선 및 차량 진행 방향 인식 시스템 개발 - 칼만 필터와 신경망을 기반으로 -)

  • Choi, Yeong-Yoon;Choi, Kwang-Mo;Moon, Ho-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.139-147
    • /
    • 2007
  • In military transportation, the use of wide trailer for transporting the large and heavy weight equipments such as tank, armoured vehicle, and mobile gunnery is quite common. So, the vulnerability of causing traffic accidents for these wide military trailer to bump or collide with another car in adjacent lane is very high due to its broad width in excess of its own lane's width. Also, the possibility of these strayed accidents can be increased especially by the careless driver. In this paper, the recognition system of lane and vehicle headway direction is developed to detect the possible collision and warn the driver to prevent the fatal accident. In the system development, Kalman filtering is used first to extract the border of driving lane from the video images supplied by the CCD camera attached to the vehicle and the driving lane detection is completed with regression analysis. Next, the vehicle headway direction is recognized by using neural network scheme with the extracted parameters of the detected driving lane feature. The practical experiments for the developed system are also carried out in the real traffic road of Seoul city area and the results show us the more than 90% accuracy in recognizing the driving lane and vehicle headway direction.

The Multi Knowledge-based Image Retrieval Technology for An Automobile Head Lamp Retrieval (자동차 전조등 검색을 위한 다중지식기반의 영상검색 기법)

  • 이병일;손병환;홍성욱;손성건;최흥국
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.3
    • /
    • pp.27-35
    • /
    • 2002
  • A knowledge-based image retrieval technique is image searching methods using some features from the queried image. The materials in this study are automobile head lamps. The input data is composed of characters and images which have various pattern. The numbers, special symbols, and general letters are under the category of the character. The image informations are made up of the distribution of pixel data, statistical analysis, and state of pattern which are useful for the knowledge data. In this paper, we implemented a retrieval system for the scientific crime detection at traffic accident using the proposed multi knowledge-based image retrieval technique. The values for the multi knowledge-based image features were extracted from color and gray scale each. With this 22 features, we improved the retrieval efficiency about the color information and pattern information. Visual basic, crystal report and MS access DB were used for this application. We anticipate the efficient scientific detection for the traffic accident and the tracking of suspicious vehicle.

  • PDF