• Title/Summary/Keyword: traffic classification

Search Result 440, Processing Time 0.021 seconds

Traffic Classification Using Machine Learning Algorithms in Practical Network Monitoring Environments (실제 네트워크 모니터링 환경에서의 ML 알고리즘을 이용한 트래픽 분류)

  • Jung, Kwang-Bon;Choi, Mi-Jung;Kim, Myung-Sup;Won, Young-J.;Hong, James W.
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.8B
    • /
    • pp.707-718
    • /
    • 2008
  • The methodology of classifying traffics is changing from payload based or port based to machine learning based in order to overcome the dynamic changes of application's characteristics. However, current state of traffic classification using machine learning (ML) algorithms is ongoing under the offline environment. Specifically, most of the current works provide results of traffic classification using cross validation as a test method. Also, they show classification results based on traffic flows. However, these traffic classification results are not useful for practical environments of the network traffic monitoring. This paper compares the classification results using cross validation with those of using split validation as the test method. Also, this paper compares the classification results based on flow to those based on bytes. We classify network traffics by using various feature sets and machine learning algorithms such as J48, REPTree, RBFNetwork, Multilayer perceptron, BayesNet, and NaiveBayes. In this paper, we find the best feature sets and the best ML algorithm for classifying traffics using the split validation.

Network Traffic Classification Based on Deep Learning

  • Li, Junwei;Pan, Zhisong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.11
    • /
    • pp.4246-4267
    • /
    • 2020
  • As the network goes deep into all aspects of people's lives, the number and the complexity of network traffic is increasing, and traffic classification becomes more and more important. How to classify them effectively is an important prerequisite for network management and planning, and ensuring network security. With the continuous development of deep learning, more and more traffic classification begins to use it as the main method, which achieves better results than traditional classification methods. In this paper, we provide a comprehensive review of network traffic classification based on deep learning. Firstly, we introduce the research background and progress of network traffic classification. Then, we summarize and compare traffic classification based on deep learning such as stack autoencoder, one-dimensional convolution neural network, two-dimensional convolution neural network, three-dimensional convolution neural network, long short-term memory network and Deep Belief Networks. In addition, we compare traffic classification based on deep learning with other methods such as based on port number, deep packets detection and machine learning. Finally, the future research directions of network traffic classification based on deep learning are prospected.

Game Traffic Classification Using Statistical Characteristics at the Transport Layer

  • Han, Young-Tae;Park, Hong-Shik
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.22-32
    • /
    • 2010
  • The pervasive game environments have activated explosive growth of the Internet over recent decades. Thus, understanding Internet traffic characteristics and precise classification have become important issues in network management, resource provisioning, and game application development. Naturally, much attention has been given to analyzing and modeling game traffic. Little research, however, has been undertaken on the classification of game traffic. In this paper, we perform an interpretive traffic analysis of popular game applications at the transport layer and propose a new classification method based on a simple decision tree, called an alternative decision tree (ADT), which utilizes the statistical traffic characteristics of game applications. Experimental results show that ADT precisely classifies game traffic from other application traffic types with limited traffic features and a small number of packets, while maintaining low complexity by utilizing a simple decision tree.

Application Traffic Classification using PSS Signature

  • Ham, Jae-Hyun;An, Hyun-Min;Kim, Myung-Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2261-2280
    • /
    • 2014
  • Recently, network traffic has become more complex and diverse due to the emergence of new applications and services. Therefore, the importance of application-level traffic classification is increasing rapidly, and it has become a very popular research area. Although a lot of methods for traffic classification have been introduced in literature, they have some limitations to achieve an acceptable level of performance in real-time application-level traffic classification. In this paper, we propose a novel application-level traffic classification method using payload size sequence (PSS) signature. The proposed method generates unique PSS signatures for each application using packet order, direction and payload size of the first N packets in a flow, and uses them to classify application traffic. The evaluation shows that this method can classify application traffic easily and quickly with high accuracy rates, over 99.97%. Furthermore, the method can also classify application traffic that uses the same application protocol or is encrypted.

Study on Classification Scheme for Multilateral and Hierarchical Traffic Identification (다각적이고 계층적인 트래픽 분석을 위한 트래픽 분류 체계에 관한 연구)

  • Yoon, Sung-Ho;An, Hyun-Min;Kim, Myung-Sup
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.3 no.2
    • /
    • pp.47-56
    • /
    • 2014
  • Internet traffic has rapidly increased due to the supplying wireless devices and the appearance of various applications and services. By increasing internet traffic rapidly, the need of Internet traffic classification becomes important for the effective use of network resource. However, the traffic classification scheme is not much studied comparing to the study for classification method. This paper proposes novel classification scheme for multilateral and hierarchical traffic identification. The proposed scheme can support multilateral identification with 4 classification criteria such as service, application, protocol, and function. In addition, the proposed scheme can support hierarchical analysis based on roll-up and drill-down operation. We prove the applicability and advantages of the proposed scheme by applying it to real campus network traffic.

An Integrated Method for Application-level Internet Traffic Classification

  • Choi, Mi-Jung;Park, Jun-Sang;Kim, Myung-Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.838-856
    • /
    • 2014
  • Enhanced network speed and the appearance of various applications have recently resulted in the rapid increase of Internet users and the explosive growth of network traffic. Under this circumstance, Internet users are eager to receive reliable and Quality of Service (QoS)-guaranteed services. To provide reliable network services, network managers need to perform control measures involving dropping or blocking each traffic type. To manage a traffic type, it is necessary to rapidly measure and correctly analyze Internet traffic as well as classify network traffic according to applications. Such traffic classification result provides basic information for ensuring service-specific QoS. Several traffic classification methodologies have been introduced; however, there has been no favorable method in achieving optimal performance in terms of accuracy, completeness, and applicability in a real network environment. In this paper, we propose a method to classify Internet traffic as the first step to provide stable network services. We integrate the existing methodologies to compensate their weaknesses and to improve the overall accuracy and completeness of the classification. We prioritize the existing methodologies, which complement each other, in our integrated classification system.

Real-time Classification of Internet Application Traffic using a Hierarchical Multi-class SVM

  • Yu, Jae-Hak;Lee, Han-Sung;Im, Young-Hee;Kim, Myung-Sup;Park, Dai-Hee
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.5
    • /
    • pp.859-876
    • /
    • 2010
  • In this paper, we propose a hierarchical application traffic classification system as an alternative means to overcome the limitations of the port number and payload based methodologies, which are traditionally considered traffic classification methods. The proposed system is a new classification model that hierarchically combines a binary classifier SVM and Support Vector Data Descriptions (SVDDs). The proposed system selects an optimal attribute subset from the bi-directional traffic flows generated by our traffic analysis system (KU-MON) that enables real-time collection and analysis of campus traffic. The system is composed of three layers: The first layer is a binary classifier SVM that performs rapid classification between P2P and non-P2P traffic. The second layer classifies P2P traffic into file-sharing, messenger and TV, based on three SVDDs. The third layer performs specialized classification of all individual application traffic types. Since the proposed system enables both coarse- and fine-grained classification, it can guarantee efficient resource management, such as a stable network environment, seamless bandwidth guarantee and appropriate QoS. Moreover, even when a new application emerges, it can be easily adapted for incremental updating and scaling. Only additional training for the new part of the application traffic is needed instead of retraining the entire system. The performance of the proposed system is validated via experiments which confirm that its recall and precision measures are satisfactory.

Classification of Traffic Flows into QoS Classes by Unsupervised Learning and KNN Clustering

  • Zeng, Yi;Chen, Thomas M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.2
    • /
    • pp.134-146
    • /
    • 2009
  • Traffic classification seeks to assign packet flows to an appropriate quality of service(QoS) class based on flow statistics without the need to examine packet payloads. Classification proceeds in two steps. Classification rules are first built by analyzing traffic traces, and then the classification rules are evaluated using test data. In this paper, we use self-organizing map and K-means clustering as unsupervised machine learning methods to identify the inherent classes in traffic traces. Three clusters were discovered, corresponding to transactional, bulk data transfer, and interactive applications. The K-nearest neighbor classifier was found to be highly accurate for the traffic data and significantly better compared to a minimum mean distance classifier.

Practical evaluation of encrypted traffic classification based on a combined method of entropy estimation and neural networks

  • Zhou, Kun;Wang, Wenyong;Wu, Chenhuang;Hu, Teng
    • ETRI Journal
    • /
    • v.42 no.3
    • /
    • pp.311-323
    • /
    • 2020
  • Encrypted traffic classification plays a vital role in cybersecurity as network traffic encryption becomes prevalent. First, we briefly introduce three traffic encryption mechanisms: IPsec, SSL/TLS, and SRTP. After evaluating the performances of support vector machine, random forest, naïve Bayes, and logistic regression for traffic classification, we propose the combined approach of entropy estimation and artificial neural networks. First, network traffic is classified as encrypted or plaintext with entropy estimation. Encrypted traffic is then further classified using neural networks. We propose using traffic packet's sizes, packet's inter-arrival time, and direction as the neural network's input. Our combined approach was evaluated with the dataset obtained from the Canadian Institute for Cybersecurity. Results show an improved precision (from 1 to 7 percentage points), and some application classification metrics improved nearly by 30 percentage points.

Study on the Functional Classification of IM Application Traffic using Automata (오토마타를 이용한 메신저 트래픽의 기능별 분류에 관한 연구)

  • Lee, Sang-Woo;Park, Jun-Sang;Yoon, Sung-Ho;Kim, Myung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.8B
    • /
    • pp.921-928
    • /
    • 2011
  • The increase of Internet users and services has caused the upsurge of data traffic over the network. Nowadays, variety of Internet applications has emerged which generates complicated and diverse data traffic. For the efficient management of Internet traffic, many traffic classification methods have been proposed. But most of the methods focused on the application-level classification, not the function-level classification or state changes of applications. The functional classification of application traffic makes possible the in-detail understanding of application behavior as well as the fine-grained control of applications traffic. In this paper we proposed automata based functional classification method of IM application traffic. We verified the feasibility of the proposed method with function-level control experiment of IM application traffic.