
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 134
Copyright ⓒ 2009 KSII

The research was partially supported by the U.S. National Science Foundation when Yi Zeng was previously at
Southern Methodist University, Dallas, Texas, USA.

DOI: 10.3837/tiis.2009.02.001

Classification of Traffic Flows into QoS
Classes by Unsupervised Learning and KNN

Clustering

Yi Zeng1 and Thomas M. Chen2
1San Diego Supercomputer Center, University of California

San Diego, CA 92093 - USA
[e-mail: yzeng@sdsc.edu]

2School of Engineering, Swansea University
Swansea, Wales SA2 8PP – UK

[e-mail: t.m.chen@swansea.ac.uk]
*Corresponding author: Thomas Chen

Received March 5, 2009; revised March 25, 2009; accepted April 10, 2009;

published April 25, 2009

Abstract

Traffic classification seeks to assign packet flows to an appropriate quality of service (QoS)
class based on flow statistics without the need to examine packet payloads. Classification
proceeds in two steps. Classification rules are first built by analyzing traffic traces, and then
the classification rules are evaluated using test data. In this paper, we use self-organizing map
and K-means clustering as unsupervised machine learning methods to identify the inherent
classes in traffic traces. Three clusters were discovered, corresponding to transactional, bulk
data transfer, and interactive applications. The K-nearest neighbor classifier was found to be
highly accurate for the traffic data and significantly better compared to a minimum mean
distance classifier.

Keywords: Traffic classification, unsupervised learning, k-nearest neighbor, clustering

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 135

1. Introduction

Network operators and system administrators are interested in the mixture of traffic carried
in their networks for several reasons. Knowledge about traffic composition is valuable for
network planning, accounting, security, and traffic control. Traffic control includes packet
scheduling and intelligent buffer management to provide the quality of service (QoS) needed
by applications. It is necessary to determine to which applications packets belong, but
traditional protocol layering principles restrict the network to processing only the IP packet
header.

Deep packet inspection (DPI) can classify traffic by examining and decoding the higher
layer protocols carried within packet payloads. The protocol field in the IP packet header will
indicate the transport layer protocol (usually TCP or UDP); then the port numbers in the
TCP/UDP header will indicate the application layer protocol if the port numbers are
well-known. However, DPI has major drawbacks that limit its usefulness. If the packet
payload is encrypted, the TCP/UDP header will be unreadable. Some applications, notably
peer-to-peer protocols, do not use well-known or even predictable port numbers. In addition,
some believe that DPI is an invasive technology that raises privacy issues.

Research in traffic classification has searched for methods to determine the composition of
traffic, without recourse to examining the packet payload. For the purpose of traffic control, it
is not necessary to classify individual packets as to their specific application; this would
require detailed knowledge of all application layer protocols. The usual goal is more modest.
Traffic flows are classified into a number of QoS classes, where flows within the same QoS
class share similar QoS requirements. The fundamental idea of traffic classification is to
differentiate flows based on flow and packet statistics that can be easily observed without
examining payloads. Routers and switches with NetFlow or sFlow capabilities can collect
traffic flow statistics, such as flow duration, number of packets and bytes, and packet length
statistics. Our aim is to make use of the collected flow statistics to determine the QOS
requirements for each flow.

There are three major research issues in flow classification. First, which flow statistics are
the most useful features for differentiating flows? We could use as many statistics as possible
but in practice, it is preferable to minimize the feature set by ignoring features that contribute
little. In this paper, we investigate the usefulness of several features in four hour-long traffic
traces. Second, what are the QoS classes? They could be decided either a priori or preferably
without a priori assumptions using unsupervised clustering algorithms to discover the QoS
classes naturally inherent in traffic data. We experimented with unsupervised clustering using
self-organizing map and K-means clustering. Third, how will new flows be classified into QoS
classes? Many machine learning techniques such as neural networks, Bayesian classifier, and
decision trees are possible. We compare K-nearest neighbor with minimum mean distance
classification.

In Section 2, we review the previous work in traffic classification. Section 3 addresses the
question of useful features and number of QoS classes. We describe experiments with
unsupervised clustering of real traffic traces to build classification rules. Given the discovered
QoS classes, Section 4 presents experimental evaluation of classification accuracy using
k-nearest neighbor compared to minimum mean distance clustering.

2. Related Work

136 Zeng et al.: Classification of Traffic Flows into QoS Classes by Clustering

Research in traffic classification, which avoids payload inspection, has accelerated over the
last five years. It is generally difficult to compare different approaches, because they vary in
the selection of features (some requiring inspection of the packet payload), choice of
supervised or unsupervised classification algorithms, and set of classified traffic classes. The
wide range of previous approaches can be seen in the comprehensive survey by Nguyen and
Armitage [1]. Further complicating comparisons between different studies is the fact that
classification performance depends on how the classifier is trained and the test data used to
evaluate accuracy. Unfortunately, a universal set of test traffic data does not exist to allow
uniform comparisons of different classifiers.

A common approach is to classify traffic on the basis of flows instead of individual packets.
Trussell et al. proposed the distribution of packet lengths as a useful feature [2]. McGregor et
al. used a variety of features: packet length statistics, interarrival times, byte counts,
connection duration [3]. Flows with similar features were grouped together using EM
(expectation-maximization) clustering. Having found the clusters representing a set of traffic
classes, the features contributing little were deleted to simplify classification and the clusters
were recomputed with the reduced feature set. EM clustering was also studied by Zander,
Nguyen, and Armitage [4]. Sequential forward selection (SFS) was used to reduce the feature
set. The same authors also tried AutoClass, an unsupervised Bayesian classifier, for cluster
formation and SFS for feature set reduction [5].

Roughan et al. experimented with k-nearest neighbor (KNN) and linear discriminant
analysis (LDA) to classify flows into four QoS classes: interactive, bulk data, streaming, and
transactional [6]. This was an example of supervised classification where the number of
classes is known. Their chosen features included packet length statistics, flow rate, flow
duration, number of packets, interarrival times, and TCP connection statistics. The main
features were connection duration and mean packet length. In comparison, we do not decide
on QoS classes a priori. We discover a set of QoS classes using unsupervised clustering.

Moore and Zuev employed supervised Naive Bayes classification of flows into several
classes [7]. Their features included flow duration, TCP port number, interarrival times,
payload sizes, and effective bandwidth. While Naïve Bayes classification achieved 65 percent
accuracy for real Internet traffic, the accuracy increased to 93 percent with the combination of
kernel density estimation and 94 percent when Naïve Bayes was combined with FCBF (fast
correlation-based filter). A later study followed up on Bayesian classification with a more
detailed discussion of features [8]. Ten, of a large set of features, were chosen as the most
useful. Unfortunately, the features include TCP header fields that require inspection of packet
payloads. In comparison, our approach does not use TCP/UDP header fields, since they reside
in the packet payloads.

BLINC followed a different approach to examine flow patterns to classify the behavior of
hosts on three levels: social, functional, and application [9]. Only flow statistics are used
without payload inspection. Empirically observed flow patterns are represented in “graphlets,”
and host behaviors are classified by matching their traffic to the closest graphlet. Our goal
differs from that of BLINC. Whereas BLINC uses traffic patterns to characterize hosts, our
goal is to characterize each traffic flow in terms of its QoS requirements.

Bernaille et al. suggested that flows could be classified based on the first five packets [10].
The packet lengths constitute a vector, and similar vectors are grouped by k-means clustering.
The study aim was to find a minimum number of packets to reasonably classify a flow.

Williams et al. compared five machine learning algorithms and concluded that Bayes
network, Naïve Bayes tree, and C4.5 achieved similar accuracy [11]. Six traffic classes were

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 137

chosen a priori. Analysis of 22 features concluded the most useful features to be: number of
packets in the flow (minimum, maximum, and mean), protocol (TCP or UDP), interarrival
time (minimum, maximum), and flow duration. In contrast, our approach includes a data
exploration phase, where the traffic classes are learned by unsupervised clustering.

Erman et al. compared unsupervised clustering algorithms: k-means, DBSCAN, and
AutoClass [12]. A later study used k-means clustering with 25 features that were reduced to:
number of packets, mean packet length, mean payload size, number of bytes, flow duration,
and mean interarrival time [13]. K-means clustering was also tried by Yingqiu et al. [14]. Our
methodology differs in that unsupervised clustering is used for data exploration to discover an
inherent set of traffic classes in the data, and then supervised clustering is used for flow
classification.

Crotti et al. proposed the idea of a “protocol fingerprint” characterized by three flow
statistics: packet length, interarrival time, and arrival order [15][16]. The proximity of a flow
to a protocol fingerprint is measured by the anomaly score.

NetADHICT used a divisive hierarchical clustering algorithm [17]. After clusters are
determined, packets are classified by decision trees based on features called (p,n)-grams.
These are substrings at fixed offsets within packets (p is the offset and n is the length of the
substring). The NetADHICT algorithm finds and groups packets containing similar bit
patterns. The approach fundamentally differs from our approach that assumes packets are
already associated into flows and uses flow statistics for classification into QoS classes.

Decision trees were also investigated by Cao et al. to differentiate BitTorrent, HTTP,
SMTP, and FTP flows [18]. Their traffic data was limited to these four specific applications,
whilst our data contain a much wider range of applications.

In a different direction from clustering approaches, Wright et al. proposed the use of
hidden Markov models for packet lengths and times [19]. Similarly, Dainotti et al. use hidden
Markov models for joint distributions of packet payload size and interarrival time [20].

3. Unsupervised Clustering

3.1 Self-Organizing Map
We start with minimal assumptions and make no a priori assumptions about classes and
features to build classification rules. Some researchers have called this exploratory phase of
traffic analysis, unsupervised clustering or off-line classification. The goal of unsupervised
clustering is to discover the inherent classes in the traffic and secondarily to discover the most
useful features for classification. Using a large set of features leads to high complexity and
computation costs that may be unnecessary. Often some features little affect classification and
can be ignored with no loss of accuracy.

We analyzed traffic data with two unsupervised clustering algorithms, self-organizing map
(SOM) and K-means clustering, to discover the number of classes and useful features inherent
in traffic data. We used four publicly available traffic traces (http://ita.ee.lbl.gov), each
consisting of an hour of Internet traffic recorded by Digital Equipment Corp. (designated dec1,
dec2, dec3, dec4). The traffic was separated into flows defined in the usual way by the
quintuplet {source address, destination address, protocol, source port, destination port}. The
traces have a mix of common applications including HTTP, NNTP, SMTP, FTP, DNS, telnet,
and SSH.

Many candidate features were considered within the categories:

138 Zeng et al.: Classification of Traffic Flows into QoS Classes by Clustering

• packet level features: packet length statistics (maximum, minimum, mean, variance);
• flow level features: statistics of number of packets per flow, number of bytes per flow,

flow duration, interarrival times;
• TCP connection level features: statistics of packets per TCP connection, bytes per

connection, connection duration.
From the literature, we expected that the most useful features would be the mean packet length
and flow or connection duration. From experiments, we found that connection level features
and flow level features captured nearly equivalent information. We chose to favor connection
level features over flow level features in subsequent experiments.

A self-organizing map is an unsupervised neural network method. It has properties of both
vector quantization and vector projection algorithms [21]. SOM can be viewed as a nonlinear
generalization of principal component analysis (PCA) traditionally used for feature extraction.
SOM has been found to be particularly helpful as a visualization tool for data clustering and
analysis. A self-organizing map consists of neurons organized on a regular low-dimensional
(usually two dimensional) grid or map. The number of neurons can range from a few to a
thousand. Thus, whilst other unsupervised clustering algorithms are possible, SOM is appeals
for visualizing high dimensional data in low dimensional views. Each neuron is represented by
a d-dimensional vector called a codebook vector m = [m1,m2,K ,md] , where d is the
dimension of input feature vectors. The neurons are connected to adjacent neurons by a
neighborhood relation; this determines the topology of the map.

SOM is trained iteratively. In each training step, one sample vector x from the input data
pool is chosen randomly, and the distances between it and all the SOM codebook vectors are
calculated using some distance measure. The neuron whose codebook vector is closest to the
input vector is called the best-matching unit (BMU), denoted by mc :

x −mc =min
i

x −mi (1)

where ⋅ is the Euclidean distance, and mi{ } are the codebook vectors.
After finding BMU, the SOM codebook vectors are updated, such that the BMU is moved

closer to the input vector. The topological neighbors of BMU are also treated this way. This
procedure moves BMU and its topological neighbors towards the sample vectors. The update
rule for the ith codebook vector is:

mi(n +1) = mi(n) +α r (n)hci(n)[x(n) −mi(n)] (2)
where n is the training iteration number, x(t) is an input vector randomly selected from the
input data set at the nth training, α r (n) is the learning rate in the nth training, and hci(n) is the
kernel function around BMU mc . The kernel function defines the region of influence that x
has on the map.

The training is performed in two steps. In the first step, coarse training is made using a large
initial learning rate and large neighborhood radius. In the second step, the learning rate and
neighborhood radius are chosen to be relatively small for fine training. After training,
neighboring neurons have similar prototype vectors. We used segments from all four traffic
traces for training.

We use a unified distance matrix (U-matrix) to visualize the cluster structure of the map.
From the U-matrix map, distances between neighboring map units can be visualized. This
helps perceive how the clusters distribute in the map. High values of the U-matrix indicate a
cluster border, whilst uniform areas of low values indicate clusters.

 From the candidate features, we chose seven features that could be calculated easily: mean
and variance of bytes per connection; connection duration; interarrival variability (ratio of the

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 139

mean to standard deviation of interarrival times); total number of packets per connection; total
number of bytes per connection; and root mean square of packet length.

Since the SOM algorithm uses the metric of Euclidean distance between vectors, the
components of the data set must be normalized before any visualization. The common way to
normalize is to linearly scale all variables, such that the variance of each variable becomes one,
and the mean becomes zero. Typically, a Gaussian distribution is assumed for the variable, but
we noticed that the Gaussian assumption was incorrect for the training data; the variables
could not be normalized based on unit variance. Instead, we linearly scaled the value ranges of
all the components to the range [0,1]; thus, none of the components could dominate the
distance calculation.

Fig. 1 shows the U-matrix and the components planes for the feature variables. The
U-matrix is a visualization of distance between neurons, where distance is color coded
according to the spectrum shown next to the map. Blue areas represent codebook vectors close
to each other in input space, i.e., clusters. Red areas represent cluster separators, where
codebook vectors are more separated in input space. Several observations we made from the
map. First, there are at least three clusters in the map. Second, variable1, variable4, and
variable7 are similar in shape. This indicates that the three features are highly linearly
correlated. Third, variable5 and variable6 are highly linearly correlated. Fourth, there seems to
be some correlation between variable3, variable5 and variable6.

Fig. 1. U-matrix with 7 components scaled to [0,1].

140 Zeng et al.: Classification of Traffic Flows into QoS Classes by Clustering

We subsequently confirmed the linear correlation between feature components by plotting
component-versus-component scatters. From the results, we chose to keep variable1,
variable2 and variable3 as the most useful features. The remaining features were either
correlated with another variable or not as important for clustering.
The U-matrix map was drawn using the reduced three feature variables. We noticed that some
applications such as HTTP, SMTP, and FTP had a much larger number of connections than the
other applications. We randomly selected equal samples from these applications to balance the

number of samples from all the applications to prevent data from these applications
dominating the map. The resulting U-matrix map is shown in Fig. 2. This map is a little

different, but resembles the previous map, still showing at least three clusters. Again, blue
areas indicate clusters, whilst red areas indicate cluster separators. We applied the K-means

clustering algorithm to the data set for further analysis.

Fig. 2. U-matrix with 3 components.

3.2 K-Means Clustering
The K-means clustering algorithm starts with a training data set and a given number of clusters
K. The samples in the training data set are assigned to a cluster based on a similarity
measurement. Euclidean distance is generally used to measure the similarity. The K-means
algorithm tries to find an optimal solution by minimizing the square error:

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 141

Er = x j − ci
2

j=1

n

∑
i=1

K

∑ (3)

where K is the number of clusters and n is the number of training samples, ci is the center of
the ith cluster, x − ci is the Euclidean distance between sample x and center ci of the ith
cluster.

We applied the K-means algorithm to segments from all four traffic traces with different
values of K, and ran the algorithm multiple times for each K. The best results were selected
based on the sum of squared errors. The Davies-Bouldin index was calculated for each
clustering. Fig. 3 shows the Davies-Boulding clustering index that is minimized with best
clustering. The Davies-Boulding index indicated that there are three clusters, consistent with
the results from the self-organizing map.

After determining the presence of three clusters from both SOM and K-means clustering,
we investigated the typical applications in each cluster. To check how different applications
corresponded to the clusters in the data, we used so-called “hit” histograms in the
self-organizing map. They are formed by taking a data set, finding the BMU of each data
sample from the U-matrix map, and incrementing a counter in a map unit each time it is the
BMU. The hit histogram shows the distribution of the data set on the map. From the hit
histograms, it became evident that the three clusters were predominantly represented by four
main applications: DNS in cluster 1, Telnet and FTP control in cluster 2, and HTTP in cluster
3.

We examined the features of packet length and connection duration of the applications to
investigate the reference data set for the three classes. The mean and standard deviation of the
features were plotted for individual applications. Inspection of the results suggested that the
applications of interest could be clustered into three regions. The first region includes
transactional applications, exemplified by DNS. The applications in this region have small
average packet size and short connection duration time. The second region includes interactive
applications, exemplified by Telnet and FTP control. Applications in this region have small
average packet size, but long connection duration. The third region includes HTTP and
represents the bulk transfer class. Applications have medium or large average packet size, but
low or medium connection duration. Whilst our discovery of these three traffic classes is
consistent with the traffic classes proposed by Roughan et al. [6], we arrived at these traffic
classes by an unsupervised learning procedure, rather than making a priori assumptions. The
results of our procedure lend support to the intuitive arguments put forth in [6].

4. Experimental Classification Results
The previous section identified three clusters for QoS classes and features to build up
classification rules through unsupervised learning. In this section, the accuracy of the
classification rules is evaluated experimentally. For classification, we chose the K-nearest
neighbor (KNN) algorithm. Experimental results are compared with the minimum mean
distance (MMD) classifier.

Several common algorithms to consider for classification include Bayesian decision theory,
K-nearest neighbor, linear discriminant analysis (LDA), support vector machines (SVM),
learning vector quantization (LVQ), and neural networks. We chose the KNN algorithm for
three reasons. First, KNN is generally very good on low-dimensional feature vectors. Second,
practical problems often have a low intrinsic dimensionality even though they may have much
input data. Third, accurate estimates for conditional probabilities are unnecessary for accurate

142 Zeng et al.: Classification of Traffic Flows into QoS Classes by Clustering

classification, thus the importance of dimensionality is reduced.

Fig. 3. Three clusters suggested from K-means clustering.

In the KNN algorithm, we first calculate the Euclidean distance of a new data point Xi to all

the training data points Xi − X j (j =1,K ,K0), then the K nearest neighbors of Xi vote with
their class index C and the class Ci with highest proportion is assigned to data point Xi. In
some respect, the KNN approach can be viewed as an approximation to Bayesian
classification.

Since KNN uses the Euclidean metric to measure distances between vectors, the scaling of
variables is important. Generally, the way to normalize data is to scale all variables so the
variance of each variable equals one, but the underlying assumption is that the variables are
Gaussian. Since the three feature variables we used in the classification are not Gaussian
distributed, we compared variance normalization with range normalization, which scales all
the variables to be within the range [0,1], by the classification error rates. Experimental results
showed that the two normalization methods lead to similar accuracy. The variance
normalization method has a slightly lower error rate than the range normalization method.
Thus, variance normalization was used in the classifier.

The three feature vectors of the reference data set are shown in Fig. 4. The feature vectors
from different classes were significantly separated. We used the leave-one-out cross validation
method to test the validity of the classification algorithm. This method takes n training
samples, leaves the first sample for testing and the remaining samples for training, and records
the classification result. The procedure is repeated until all the training samples have been
used as test samples once. The error rate is then calculated as the number of misclassifications
in the training samples divided by n. We observed that the total error rate is sufficiently low for
accurate classification.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 143

Fig. 4. Three feature vectors.

The three features used in the experiments were mean packet length per connection,

connection duration, and interarrival variability, with three QoS classes: transactional,
interactive, and bulk transfer. The 5NN algorithm was used for classification of all
connections in the four traffic traces. Fig. 5, displays the classification error rates of the 5NN
classifier for the two normalization methods. The selected application lists for each class and
the number of applications in each class are shown in Table 1.

Fig. 5. KNN classification with two normalization methods.

144 Zeng et al.: Classification of Traffic Flows into QoS Classes by Clustering

The accuracy of the 5NN classifier was compared to the minimum mean distance (MMD)

classifier. The MMD classifier tries to condense information stored in the training data to a
reduced set of statistics, for example, the sample mean of the training data. For class wi , only
the sample mean μwi

 of the training data belonging to the class is recorded. A test sample x is
classified to the class wi when μwi

 is closest to it. However, since the μwi
 does not contain

the information about the spatial distribution of training samples, but covariance matrix Σi
does, we use the normalized distance, (x −μwi

)T Σi
−1(x −μwi

) , to measure the distance
between samples and cluster means. The misclassification rate for the MMD classifier was
found to be 7.26%, significantly worse than the 5NN classifier.

Table 1. Applications in each class
Class Applications Total number

Transactional 53/TCP, 13/TCP, 111/TCP,… 112

Interactive 23/TCP, 21/TCP, 43/TCP, 513/TCP, 514/TCP, 540/TCP, 251/TCP,
1017/TCP, 1019/TCP, 1020/TCP, 1022/TCP,… 77

Bulk data 80/TCP, 20/TCP, 25/TCP, 70/TCP, 79/TCP, 81/TCP, 82/TCP,
83/TCP, 84/TCP, 119/TCP, 210/TCP, 8080/TCP,… 1351

5. Conclusions
Traffic classification was carried out in two phases. In the first off-line phase, we started with
no assumptions about traffic classes and used the unsupervised SOM and K-means clustering
algorithms to find the structure in the traffic data. The data exploration procedure found three
clusters corresponding to three QoS classes: transactional, interactive, and bulk data transfer.
This result lends experimental support to previous arguments for a similar set of traffic classes.
In addition, we found that the three most useful features among the candidate features were

mean packet length, connection duration, and interarrival variability. This is not to say that the
discovered set of traffic classes is optimal in any sense. The composition of Internet traffic is

constantly changing due to new applications and fluctuations in the popularity of different
applications over time. It is necessary to continually re-examine traffic. This is likely to

uncover new traffic classes.
In the second classification phase, the accuracy of the KNN classifier was evaluated for test

data. Leave-one-out cross-validation tests showed that this algorithm had a low error rate. The
KNN classifier was found to have an error rate of about 2 percent for the test data, compared to

an error rate of 7 percent for a MMD classifier. KNN is one of the simplest classification
algorithms, but not necessarily the most accurate. Other supervised algorithms, such as back
propagation (BP) and SVM, also have attractive features and should be compared in future

work.

References
[1] Thuy Nguyen and Grenville Armitage, “A survey of techniques for Internet traffic classification

using machine learning,” IEEE Communications Surveys and Tutorials, vo.10, no.4, pp.56-76,
2008.

[2] H. Trussell, A. Nilsson, P. Patel, and Y. Wang, “Estimation and detection of network traffic,” in
Proc. of 11th Digital Signal Processing Workshop, pp.246-248, 2004.

[3] Anthony McGregor, Mark Hall, Perry Lorier, and James Brunskill, “Flow clustering using

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 3, NO. 2, April 2009 145

machine learning techniques,” in Proc. of 5th Int. Workshop on Passive and Active Network
Measurement, pp.205-214, 2004.

[4] Sebastian Zander, Thuy Nguyen, and Grenville Armitage, “Self-learning IP traffic classification
based on statistical flow characteristics,” in Proc. of 6th Int. Workshop on Passive and Active
Measurement, pp.325-328, 2005.

[5] Sebastian Zander, Thuy Nguyen, and Grenville Armitage, “Automated traffic classification and
application identification using machine learning,” in Proc. of IEEE Conf. on Local Computer
Networks, pp.250-257, 2005.

[6] Matthew Roughan, Subrabrata Sen, Oliver Spatscheck, and Nick Duffield, “Class-of-service
mapping for QoS: a statistical signature-based approach to IP traffic classification,” in Proc. of 4th
ACM SigComm Conf. on Internet Measurement, pp.135-148, 2004.

[7] Andrew Moore and Dennis Zuev, “Internet traffic classification using Bayesian analysis
techniques,” in Proc. of ACM Sigmetrics Int. Conf. on Measurement and Modeling of Computer
Systems, pp.50-60, 2005.

[8] Tom Auld, Andrew Moore, and Stephen Gull, “Bayesian neural networks for Internet traffic
classification,” IEEE Trans. on Neural Networks, vol.18, no.1, pp.223-239, Jan. 2007

[9] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos, “BLINC: multilevel
traffic classification in the dark,” ACM Sigcomm Computer Communications Review, vol.35,
no.10, pp.229-240, 2005.

[10] Laurent Bernaille, Renata Teixeira, Ismael Akodkenou, Augustin Soule, and Kave Salamatian,
“Traffic classification on the fly,” ACM Sigcomm Computer Communications Review, vol.36, no.4,
pp.23-26, Apr. 2006.

[11] Nigel Williams, Sebastian Zander, and Grenville Armitage, “A preliminary performance
comparison of five machine learning algorithms for practical IP traffic flow classification,” ACM
Sigcomm Computer Communications Review, vol.36, no.10, pp.5-16, Oct. 2006.

[12] Jeffrey Erman, Martin Arlitt, and Anirban Mahanti, “Traffic classification using clustering
algorithms,” in Proc. of ACM Sigcomm Workshop on Mining Network Data, pp.281-286, 2006.

[13] Jeffrey Erman, Anirban Mahanti, Martin Arlitt, and Carey Williamson, “Identifying and
discriminating between web and peer-to-peer traffic in the network core,” in Proc. of 16th Int. Conf.
on World Wide Web, pp.883-892, 2007.

[14] Liu Yingqiu, Li Wei, and Li Yunchun, “Network traffic classification using k-means clustering,”
in Proc. of 2nd Int. Multisymposium on Computer and Computational Sciences, pp.360-365, 2007

[15] Manuel Crotti, Francesco Gringoli, Paolo Pelosato, and Luca Salgarelli, “A statistical approach to
IP-level classification of network traffic,” in Proc. of IEEE ICC 2006, pp.170-176, 2006.

[16] Manuel Crotti, Maurizio Dusi, Francesco Gringoli, and Luca Salgarelli, “Traffic classification
through simple statistical fingerprinting,” ACM Sigcomm Computer Communications Review,
vol.37, no.1, pp.7-16, Jan. 2007.

[17] Hajime Inoue, Dana Jansens, Abdulrahman Hijazi, and Anil Somayaji, “NetADHICT: a tool for
understanding network traffic,” in Proc. of Usenix Large Installation System Administration Conf.,
pp. 39-47, 2007.

[18] Jin Cao, Aiyou Chen, Indra Widjaja, and Nengfeng Zhou, “Online identification of applications
using statistical behavior analysis,” in Proc. of IEEE Globecom 2008, pp.1-6, 2008.

[19] Charles Wright, Fabian Monrose, and Gerald Masson, “On inferring application protocol
behaviors in encrypted network traffic,” J. of Machine Learning Research, vol.7, no.12,
pp.2745-2769, Dec. 2006.

[20] Alberto Dainotti, Walter de Donato, Antonio Pescape, and Pierluigi Salvo Rossi, “Classification of
network traffic via packet-level hidden Markov models,” in Proc. of IEEE Globecom 2008, pp.1-5,
2008.

[21] Teuvo Kohonen, “Self-Organizing Map,” Springer Series in Information Sciences, vol.30,
Springer Berlin, 1995.

146 Zeng et al.: Classification of Traffic Flows into QoS Classes by Clustering

Yi Zeng received a B.S. degree from Harbin Institute of Technology, China, in 1994, a
M.S. degree from Nanjing University of Posts and Telecommunications, China in 1999,
and a Ph.D. degree from Southern Methodist University, Dallas, Texas, in 2008. She is
currently with the San Diego Supercomputer Center in the University of California, San
Diego. Her research interests include Internet data mining, data classification, statistical
modeling the Internet traffic, network self-similarity, and machine learning.

Thomas M. Chen is a Professor in Networks at Swansea University in Swansea,
Wales, UK. He received BS and MS degrees in electrical engineering from the
Massachusetts Institute of Technology, and PhD in electrical engineering from the
University of California, Berkeley, USA. He worked at GTE Laboratories (now Verizon)
in Waltham, Massachusetts, and then the Department of Electrical Engineering at
Southern Methodist University, Dallas, Texas, as an associate professor. He joined
Swansea University in May 2008. He is the co-author of ATM Switching (Artech House)
and co-editor of Broadband Mobile Multimedia: Techniques and Applications (CRC
Press). He is currently editor-in-chief of IEEE Network and was former editor-in-chief of
IEEE Communications Magazine. He received the IEEE Communications Society's Fred
Ellersick best paper award in 1996.

