• Title/Summary/Keyword: total construction cost

Search Result 579, Processing Time 0.026 seconds

Time-Profit Trade-Off of Construction Projects Under Extreme Weather Conditions

  • Senouci, Ahmed;Mubarak, Saleh
    • Journal of Construction Engineering and Project Management
    • /
    • v.4 no.4
    • /
    • pp.33-40
    • /
    • 2014
  • Maximizing the profitability and minimizing the duration of construction projects in extreme weather regions is a challenging objective that is essential for project success. An optimization model is presented herein for the time-profit trade-off analysis of construction projects under extreme weather conditions. The model generates optimal/near optimal schedules that maximize profit and minimize the duration of construction projects in extreme weather regions. The computations in the model are organized into: (1) a scheduling module that develops practical schedules for construction projects, (2) a profit module that computes project costs (direct, indirect, and total) and project profit, and (3) a multi-objective module that determines optimal/near optimal trade-offs between project duration and profit. One example is used to show the impact of extreme weather on construction time and profit. Another example is used to show the model's ability to generate optimal trade-offs between the time and profit of construction projects under extreme weather conditions.

Development of Loss Model Based on Quantitative Risk Analysis of Infrastructure Construction Project: Focusing on Bridge Construction Project (인프라건설 프로젝트 리스크 분석에 따른 손실 정량화 모델 개발 연구: 교량프로젝트를 중심으로)

  • Oh, Gyu-Ho;Ahn, Sungjin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.208-209
    • /
    • 2022
  • This study aims to analyze the risk factors caused by object damage and third-party damage loss in actual bridge construction based on past insurance premium payment data from major domestic insurers for bridge construction projects, and develop a quantitative loss prediction model. For the development of quantitative bridge construction loss model, the dependent variable was selected as the loss ratio, and the independent variable adopted 1) Technical factors: superstructure type, foundation type, construction method, and bridge length 2) Natural hazards: flood anf Typhoon, 3) Project information: total construction duration, total cost and ranking. Among the selected independent variables, superstructure type, construction method, and project period were shown to affect the ratio of bridge construction losses, while superstructure, foundation, flood and ranking were shown to affect the ratio of the third-party losses.

  • PDF

A Comparison of Construction Cost Estimation Using Multiple Regression Analysis and Neural Network in Elementary School Project

  • Cho, Hong-Gyu;Kim, Kyong-Gon;Kim, Jang-Young;Kim, Gwang-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.1
    • /
    • pp.66-74
    • /
    • 2013
  • In the early stages of a construction project, the most important thing is to predict construction costs in a rational way. For this reason, many studies have been performed on the estimation of construction costs for apartment housing and office buildings at early stage using artificial intelligence, statistics, and the like. In this study, cost data held by a provincial Office of Education on elementary schools constructed from 2004 to 2007 were used to compare the multiple regression model with an artificial neural network model. A total of 96 historical data were classified into 76 historical data for constructing models and 20 historical data for comparing the constructed regression model with the artificial neural network model. The results of an analysis of predicted construction costs were that the error rate of the artificial neural network model is lower than that of the multiple regression model.

An Analysis of Safety Control Effectiveness in Construction (건설업 안전관리 효과분석에 관한 실증적 연구)

  • 갈원모;손기상;채준석
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.121-128
    • /
    • 1996
  • Estimating the cost of injuries and "accidents" to an organization is very important to figure out about how much well each organization has run his company and how much efficiently he has got the results using a certain amount of the expense for safety. Despite the potential usefulness to management of information as to the cost of a company's "accidents", it is not customary accounting practice to make these data available. Of the two general kinds of costs forced on a company by its occupational injuries and "accidents", the insurance cost and uninsured cost, -the former is by far the easier to find out. But actually, this uninsured cost should be figured out at each company. Authors have designed the generalized model to figure out the above problem costs to establish its efficient safety control. One construction company has been a pilot for this study. It is found that efficient safety control cost should be 1.2%~l.3% of total selling amount by analyzing actual data for three years.g actual data for three years.

  • PDF

Estimation of Application Cost and Utilization of Turf Grass VFS for Reduction of Uplands NPS Pollution (밭 비점오염저감을 위한 잔디초생대 적용 비용 및 활용성 평가)

  • Lee, Seul-Gi;Jang, Jeong-Ryeol;Choi, Kyung-Sook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.2
    • /
    • pp.75-83
    • /
    • 2015
  • This study was aimed to estimate the total application cost and utilization of Turf grass VFS application through the field experiment. The experimental plots were constructed in an upland field of Iksan city within the Saemangeum watershed. Turf grass was transplanted at the down-slope edge of the pollution source area in each of the treated plots. Three rainfall events were monitored during the experiment period, and the rainfall-runoff relationships and NPS pollution reduction effects of the VFS systems were assessed. As results, the reduction ratio of runoff volume ranged 14.1~64.0 %, while the NPS pollution reduction ratio ranged 9.8~73.9 % for SS, 24.0~84.2 % for T-N, 31.6~80.9 % for T-P respectively. The total cost of VFS application was estimated by considering purchase cost of Turf grass sods and construction and maintenance costs of VFS system as well as the loss caused by giving up crop cultivation for the area needed to construct the VFS. The total cost of the VFS was estimated to be approximately \3,379,000/ha/year for the first year of application, and this cost could be decreased to \1,899,000/ha/year from the second year as the construction cost of VFS could no longer need to be counted afterwards. Apart from the NPS pollution reduction effects, the possible utilization of VFS was examined by detaching Turf grass within 40 % of VFS area for sale during spring time when the VFS systems fully covered. The benefit of selling the detached Turf grass sods was estimated as \1,260,000/ha/year, and also found that the VFS area successfully recovered by the time of the summer period. This benefit could attract farmers to adopt the VFS technique to manage agricultural NPS pollution.

The Economic Analysis of Underground Parking Lot Frames adopting 8-Bay Parking Modules (8-Bay 주차모듈을 적용한 아파트 지하주차장 구조의 경제성 분석)

  • Yu, Yongsin;Yoon, Bohyung;Kim, Minsu;Kim, Taewan;Lee, Chansik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.1
    • /
    • pp.52-61
    • /
    • 2019
  • On 30 June, 2017, the Ministry of Land, Infrastructure, and Transport announced the minimum size of parking section will be expanded in parking lots. The expansion of parking section could lead to increase in apartment prices because of increase in total area of the parking lots. It is necessary to adjust the column spacing and number in the parking lots and to apply the 8-Bay long-span parking module with good parking efficiency. According to the study, the construction cost of the 6-Bay module and 8-Bay module was almost the same. But The 8-Bay module was more economical than the 6-Bay module because of the reduction in total area of 8-Bay multi-moduel. The Result of construction cost of 8-Bay modules, Removal Deck-plate RC system was most economical. While the construction cost of PC system was higher due to increase in volume of the member, it would ensure sufficient economy by reducing the girder height to apply a pre-stress method. Also, the construction cost of hollow slab system was the highest. But it could be used as the underground parking lots for apartment, because it had the lowest cost per square meter. This Study has a academic significance by proving the applicability of the 8-Bay Module to underground parking lot of apartment. And it is expected that this study will be used as basic data to derive optimal construction method that applies 8-Bay Module.

Improvement of the Calculation Standard for Prolongation cost of Long-term Continuing Contracts Construction Project (장기계속계약공사의 공기연장 추가간접비 산정 개선방안)

  • Jeong, Kichang;Lee, Jaeseob
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.2
    • /
    • pp.30-37
    • /
    • 2017
  • In Korea, additional indirect costs generated from the time period extension of public construction projects have been studied. Practical claims against such costs are increasing. There are no clear criteria for calculating the delay cost caused by the extension, and thus calculation methods differ across entities. Logical valid calculation methods have also not been researched. Further, there are no Korean studies on the additional indirect cost caused by a suspension in a public construction project on a long-term continuing contract. The purpose of this research is to propose a method of calculating the indirect cost incurred by construction time extension that reflects the characteristics of Korean public construction projects. The cost patterns generated during construction periods were analyzed, and then the current criteria of calculating the indirect costs caused by the extension were examined. Following this, actual conditions and practices in the field were surveyed and the current calculation method was applied to a model case to compare the actual cost and that determined from the current calculation method. Issues with the current method were identified by this comparison. Based on this, this research proposes a method of calculating the total actual cost caused by a suspension in a public construction project that is appropriate for calculating the additional indirect cost generated by a suspension in a public construction project on a long-term continuing contract.

OPTIMAL DESIGN FOR CAPACITY EXPANSION OF EXISTING WATER SUPPLY SYSTEM

  • Ahn, Tae-Jin;Lyu, Heui-Jeong;Park, Jun-Eung;Yoon, Yong-Nam
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.63-74
    • /
    • 2000
  • This paper presents a two- phase search scheme for optimal pipe expansion of expansion of existing water distribution systems. In pipe network problems, link flows affect the total cost of the system because the link flows are not uniquely determined for various pipe diameters. The two-phase search scheme based on stochastic optimization scheme is suggested to determine the optimal link flows which make the optimal design of existing pipe network. A sample pipe network is employed to test the proposed method. Once the best tree network is obtained, the link flows are perturbed to find a near global optimum over the whole feasible region. It should be noted that in the perturbation stage the loop flows obtained form the sample existing network are employed as the initial loop flows of the proposed method. It has been also found that the relationship of cost-hydraulic gradient for pipe expansion of existing network affects the total cost of the sample network. The results show that the proposed method can yield a lower cost design than the conventional design method and that the proposed method can be efficiently used to design the pipe expansion of existing water distribution systems.

  • PDF

Development of A Computerized Risk Management System for International EPCS Projects

  • Yoo, Wi Sung;Kim, Woo-young;Sung, Yookyung
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.614-615
    • /
    • 2015
  • In these days, global construction market is speedily increasing and domestic construction companies have a chance of new contracts. In the meantime, international projects have been increasingly forced to cope with potential risks, which seriously impacted achieving the targeted time and cost. In this study, we introduce a computerized risk management system for international EPCS projects, which is constructed on the needs of practitioners and decision makers as an aid to proactively control the potential risks and to monitor continuously their status and variation. The system is called the Project Risk Management System (PRiMS) is useful for furnishing project managers with warning signals as a project is progressing and helpful for producing the total risk score and tracking risk variation.

  • PDF

Optimal Design of Bridge Substructure Considering Uncertainty (불확실성을 고려한 교량 하부구조 최적설계)

  • Pack, Jang-Ho;Shin, Young-Seok;Shin, Wook-Bum;Lee, Jae-Woo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.387-390
    • /
    • 2008
  • The importance of the life cycle cost analysis for construction projects of bridge has been recognized over the last decades. Accordingly, theoretical models, guidelines, and supporting softwares have been developed for the life cycle cost analysis of bridges. However, it is difficult to predict life cycle cost considering uncertainties precisely. This paper presents methodology for optimal design of substructure for a steel box bridge. Total life cycle cost for the service life is calculated as sum of initial cost, damage cost considering uncertainty, maintenance cost, repair and rehabilitation cost. The optimization method is applied to design of a bridge substructure with minimal cost, in which the objective function is set to life cycle cost and constraints are formulated on the basis of Korean Bridge Design Specification. Initial cost is calculated based on standard costs of the Korea Construction Price Index and damage cost on the damage probabilities to consider the uncertainty of load and resistance. An advanced first-order second moment method is used as a practical tool for reliability analysis using damage probability. Maintenance cost and cycle is determined by a stochastic method and user cost includes traffic operation costs and time delay costs.

  • PDF