• Title/Summary/Keyword: torsional oscillation

Search Result 40, Processing Time 0.017 seconds

Non-linear Shimmy Analysis of a Nose Landing Gear with Friction (마찰을 고려한 노즈 랜딩기어의 비선형 쉬미 해석)

  • Yi, Mi-Seon;Bae, Jae-Sung;Hwang, Jae-Hyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.7
    • /
    • pp.605-611
    • /
    • 2011
  • Shimmy is a self-excited vibration in lateral and torsional directions of a landing gear during either the take-off or landing. It is caused by a couple of conditions such as a low torsional stiffness of the strut, a free-play in the landing gear, a wheel imbalance, or worn parts, and it may make the aircraft unstable. This study was performed for an analysis of the shimmy stability on a small aircraft. A nose landing gear was modeled as a linear system and characterized by state-equations which were used to analyze the stability both in the frequency and time-domain for predicting whether the shimmy occurs and investigating a good design range of the important parameters. The root-locus method and the 4th Runge-Kutta method were used for each analysis. Because the present system has a simple mechanism using a friction to reinforce the stability, the friction, a non-linear factor, was linearized by a describing function and considered in the analysis and observed the result of the instability reduction.

Seismic pounding effects on the adjacent symmetric buildings with eccentric alignment

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Omar, Mohamed;Abdel Zaher, Ahmed K.
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.715-726
    • /
    • 2019
  • Several municipal seismic vulnerability investigations have been identified pounding of adjacent structures as one of the main hazards due to the constrained separation distance between adjacent buildings. Consequently, an assessment of the seismic pounding risk of buildings is superficial in future adjustment of design code provisions for buildings. The seismic lateral oscillation of adjacent buildings with eccentric alignment is partly restrained, and therefore a torsional response demand is induced in the building under earthquake excitation due to eccentric pounding. In this paper, the influence of the eccentric seismic pounding on the design demands for adjacent symmetric buildings with eccentric alignment is presented. A mathematical simulation is formulated to evaluate the eccentric pounding effects on the seismic design demands of adjacent buildings, where the seismic response analysis of adjacent buildings in series during collisions is investigated for various design parameters that include number of stories; in-plan alignment configurations, and then compared with that for no-pounding case. According to the herein outcomes, the effects of seismic pounding severity is mainly depending on characteristics of vibrations of the adjacent buildings and on the characteristics of input ground motions as well. The position of the building wherever exterior or interior alignment also, influences the seismic pounding severity as the effect of exposed direction from one or two sides. The response of acceleration and the shear force demands appear to be greater in case of adjacent buildings as seismic pounding at different levels of stories, than that in case of no-pounding buildings. The results confirm that torsional oscillations due to eccentric pounding play a significant role in the overall pounding-involved response of symmetric buildings under earthquake excitation due to horizontal eccentric alignment.

Extraction of bridge aeroelastic parameters by one reference-based stochastic subspace technique

  • Xu, F.Y.;Chen, A.R.;Wang, D.L.;Ma, R.J.
    • Wind and Structures
    • /
    • v.14 no.5
    • /
    • pp.413-434
    • /
    • 2011
  • Without output covariance estimation, one reference-based Stochastic Subspace Technique (SST) for extracting modal parameters and flutter derivatives of bridge deck is developed and programmed. Compared with the covariance-driven SST and the oscillation signals incurred by oncoming or signature turbulence that adopted by previous investigators, the newly-presented identification scheme is less time-consuming in computation and a more desired accuracy should be contributed to high-quality free oscillated signals excited by specific initial displacement. The reliability and identification precision of this technique are confirmed by a numerical example. For the 3-DOF sectional models of Sutong Bridge deck (streamlined) and Suramadu Bridge deck (bluff) in wind tunnel tests, with different wind velocities, the lateral bending, vertical bending, torsional frequencies and damping ratios as well as 18 flutter derivatives are extracted by using SST. The flutter derivatives of two kinds of typical decks are compared with the pseudo-steady theoretical values, and the performance of $H_1{^*}$, $H_3{^*}$, $A_1{^*}$, $A_3{^*}$ is very stable and well-matched with each other, respectively. The lateral direct flutter derivatives $P_5{^*}$, $P_6{^*}$ are comparatively more accurate than other relevant lateral components. Experimental procedure seems to be more critical than identification technique for refining the estimation precision.

Structure-property relations for polymer melts: comparison of linear low-density polyethylene and isotactic polypropylene

  • Drozdov, A.D.;Al-Mulla, A.;Gupta, R.K.
    • Advances in materials Research
    • /
    • v.1 no.4
    • /
    • pp.245-268
    • /
    • 2012
  • Results of isothermal torsional oscillation tests are reported on melts of linear low density polyethylene and isotactic polypropylene. Prior to rheological tests, specimens were annealed at various temperatures ranging from $T_a$ = 180 to $310^{\circ}C$ for various amounts of time (from 30 to 120 min). Thermal treatment induced degradation of the melts and caused pronounced decreases in their molecular weights. With reference to the concept of transient networks, constitutive equations are developed for the viscoelastic response of polymer melts. A melt is treated as an equivalent network of strands bridged by junctions (entanglements and physical cross-links). The time-dependent response of the network is modelled as separation of active strands from and merging of dangling strands with temporary nodes. The stress-strain relations involve three adjustable parameters (the instantaneous shear modulus, the average activation energy for detachment of active strands, and the standard deviation of activation energies) that are determined by matching the dependencies of storage and loss moduli on frequency of oscillations. Good agreement is demonstrated between the experimental data and the results of numerical simulation. The study focuses on the effect of molecular weight of polymer melts on the material constants in the constitutive equations.

Warning Signal for Limit Cycle Flutter of 2D Airfoil with Pitch Nonlinearity by Critical Slowing Down (비틀림 비선형성을 갖는 2차원 익형의 Critical Slowing Down 을 이용한 Limit Cycle Flutter 예측 인자)

  • Lim, Joosup;Lee, Sang-Wook;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • In this paper, limit cycle flutter induced by Hopf bifurcation is studied with nonlinear system analysis approach and observed for the critical slowing down phenomenon. Considering an attractor of the dynamics of a system, when a small perturbation is applied to the system, the dynamics converge toward the attractor at some rate. The critical slowing down means that this recovery rate approaches zero as a parameter of the system varies and the size of the basin of attraction shrinks to nil. Consequently, in the pre-bifurcation regime, the recovery rates decrease as the system approaches the bifurcation. This phenomenon is one of the features used to forecast bifurcation before they actually occur. Therefore, studying the critical slowing down for limit cycle flutter behavior would have potential applicability for forecasting those types of flutter. Herein, modeling and nonlinear system analysis of the 2D airfoil with torsional nonlinearity have been discussed, followed by observation of the critical slowing down phenomenon.

A Study on vibration suppression of dual inertia system using controlling Parameter $\alpha$ of PID controller with 2-degree of freedom (2자유도 PID 제어기의 파라미터 $\alpha$ 추종을 이용한 2관성 시스템의 진동억제)

  • 박재현;추연규;김현덕;박연식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.506-510
    • /
    • 2004
  • A torque transmission system composed of several gears and couplings is flexible. In order to get an exact response of motor, the torsional vibration due to an unexpected change of motor speed must be suppressed. Therefore, it is very important that motor control suppress vibration. Various methods to control it including dual inertia system are proposed. Specially, the method of vibration suppression is that vibration can be suppressed to fee㏈ack the estimated torsion torque via the disturbance observer filter being of normal filter. The suitable Proportional controller and coefficient parameter can be designed using CDM and the torsional vibration also be suppressed, but it has a low degree of adaptability to disturbance. The PID controller can be designed easily, but makes the excessive overshoot and oscillation for system response in the early period. To resolve these problems, simple and practical PID controller with two degree of freedom is proposed recently that it ran improve performance of obeying the reference unconcerned in any disturbance by changing the proportional gain by two degree of freedom parameter. But it has also the defect that parameter a must be changed to obtain the ideal Proportional parameter. On this paper, we design the controller which automatically adjusts parameter u using fuzzy Algorithm to overcome such defects. Also, we compare the proposed method with established one and evaluate them to confirm performance of the designed controller.

  • PDF

Vortex induced vibration and flutter instability of two parallel cable-stayed bridges

  • Junruang, Jirawat;Boonyapinyo, Virote
    • Wind and Structures
    • /
    • v.30 no.6
    • /
    • pp.633-648
    • /
    • 2020
  • The objective of this work was to investigate the interference effects of two-parallel bridge decks on aerodynamic coefficients, vortex-induced vibration, flutter instability and flutter derivatives. The two bridges have significant difference in cross-sections, dynamic properties, and flutter speeds of each isolate bridge. The aerodynamic static tests and aeroelastic tests were performed in TU-AIT boundary layer wind tunnel in Thammasat University (Thailand) with sectional models in a 1:90 scale. Three configuration cases, including the new bridge stand-alone (case 1), the upstream new bridge and downstream existing bridge (case 2), and the downstream new bridge and the upstream existing bridge (case 3), were selected in this study. The covariance-driven stochastic subspace identification technique (SSI-COV) was applied to identify aerodynamic parameters (i.e., natural frequency, structural damping and state space matrix) of the decks. The results showed that, interference effects of two bridges decks on aerodynamic coefficients result in the slightly reduction of the drag coefficient of case 2 and 3 when compared with case 1. The two parallel configurations of the bridge result in vortex-induced vibrations (VIV) and significantly lower the flutter speed compared with the new bridge alone. The huge torsional motion from upstream new bridge (case 2) generated turbulent wakes flow and resulted in vertical aerodynamic damping H1* of existing bridge becomes zero at wind speed of 72.01 m/s. In this case, the downstream existing bridge was subjected to galloping oscillation induced by the turbulent wake of upstream new bridge. The new bridge also results in significant reduction of the flutter speed of existing bridge from the 128.29 m/s flutter speed of the isolated existing bridge to the 75.35 m/s flutter speed of downstream existing bridge.

A deformable section model for the dynamics of suspension bridges -Part I : Model and linear response

  • Sepe, Vincenzo;Augusti, Giuliano
    • Wind and Structures
    • /
    • v.4 no.1
    • /
    • pp.1-18
    • /
    • 2001
  • The classical two-degree-of-freedom (2-d-o-f) "sectional model" is currently used to study the dynamics of suspension bridges. Taking into account the first pair of vertical and torsional modes of the bridge, it describes well global oscillations caused by wind actions on the deck and yields very useful information on the overall behaviour and the aerodynamic and aeroelastic response, but does not consider relative oscillation between main cables and deck. The possibility of taking into account these relative oscillations, that can become significant for very long span bridges, is the main purpose of the 4-d-o-f model, proposed by the Authors in previous papers and fully developed here. Longitudinal deformability of the hangers (assumed linear elastic in tension and unable to react in compression) and external loading on the cables are taken into account: thus not only global oscillations, but also relative oscillations between cables and deck can be described. When the hangers go slack, large nonlinear oscillations are possible; if the hangers remain taut, the oscillations are small and essentially linear. This paper describes the model proposed for small and large oscillations, and investigates in detail the limit condition for linear response under harmonic actions on the cables (e.g., like those that could be generated by vortex shedding). These results are sufficient to state that, with geometric and mechanical parameters in a range corresponding to realistic cases of large span suspension bridges, large relative oscillations between main cables and deck cannot be excluded, and therefore should not be neglected in the design. Forthcoming papers will investigate more general cases of loading and dynamic response of the model.

Shaking table test of pounding tuned mass damper (PTMD) on a frame structure under earthquake excitation

  • Lin, Wei;Wang, Qiuzhang;Li, Jun;Chen, Shanghong;Qi, Ai
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.545-553
    • /
    • 2017
  • A pounding tuned mass damper (PTMD) can be considered as a passive device, which combines the merits of a traditional tuned mass damper (TMD) and a collision damper. A recent analytical study by the authors demonstrated that the PTMD base on the energy dissipation during impact is able to achieve better control effectiveness over the traditional TMD. In this paper, a PTMD prototype is manufactured and applied for seismic response reduction to examine its efficacy. A series of shaking table tests is conducted in a three-story building frame model under single-dimensional and two-dimensional broadband earthquake excitations with different excitation intensities. The ability of the PTMD to reduce the structural responses is experimentally investigated. The results show that the traditional TMD is sensitive to input excitations, while the PTMD mostly has improved control performance over the TMD to remarkably reduce both the peak and root-mean-square (RMS) structural responses under single-dimensional earthquake excitation. Unlike the TMD, the PTMD is found to have the merit of maintaining a stable performance when subjected to different earthquake loadings. In addition, it is also indicated that the performance of the PTMD can be enhanced by adjusting the initial gap value, and the control effectiveness improves with the increasing excitation intensity. Under two-dimensional earthquake inputs, the PTMD controls remain outperform the TMD controls; however, the oscillation of the added mass is observed during the test, which may induce torsional vibration modes of the structure, and hence, result in poor control performance especially after a strong earthquake period.

Parameter Optimization of the Marine Gyrocompass Follow-up System (자이로콤파스 추종계통의 최적조정)

  • 이상집
    • Journal of the Korean Institute of Navigation
    • /
    • v.5 no.2
    • /
    • pp.49-58
    • /
    • 1981
  • One of the main purposes of the marine gyrocompass follow-up system is to preserve the sensitive part from the wandering error due to the frictional or torsional torque around the vertical axis. This error can be diminished through the rapid follow-up action, which minimizes the relative azimuthal angular displacement between the sensitive and follow-up parts and shortens the duration of the same displacement. But an excessive rapidity of the follow-up action would result in a sustained oscillation to the system. Therefore, to design a new type of the follow-up system, the theoretical annlysis of the problems concerned should be studied systematically by introducing the control theory. This paper suggest a concrete procedure for the optimal adjustment of the gyrocompass follow-up system, utilizing the mathematic model and the stability informations formerly investiaged by the author. For theoptimal determination of the adjustable paramfter K, the performance index(P.I.), ITSE(Intergral of the Time multiplied by the Squared Error) is proposed, namely, P.I. = $\int_{0}^{\infty} t \cdot e^{2}(t)dt$ where t is time and e(t) means control error. Then, the optimal parameter minimizing the performance index is calculated by means of Parseval's theorem and numerical computation, and the validity of the obtained optimal value of the parameter Ka is examined and confirmed through the simulations and experiments. By using, the proposed method, the optimal adjustment can be performed deterministically. But, this can not be expected in the conventional frequency domain analysis. While the Mps of the original system vary to the extent of from 0.98 to 46.27, Mp of the optimal system is evaluated as 1.1 which satisfies the generally accepted frequency domain specification.

  • PDF