• Title/Summary/Keyword: topology optimum design

Search Result 74, Processing Time 0.023 seconds

Structural Topology Design Using Compliance Pattern Based Genetic Algorithm (컴플라이언스 패턴 기반 유전자 알고리즘을 이용한 구조물 위상설계)

  • Park, Young-Oh;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.8
    • /
    • pp.786-792
    • /
    • 2009
  • Topology optimization is to find the optimal material distribution of the specified design domain minimizing the objective function while satisfying the design constraints. Since the genetic algorithm (GA) has its advantage of locating global optimum with high probability, it has been applied to the topology optimization. To guarantee the structural connectivity, the concept of compliance pattern is proposed and to improve the convergence rate, small number of population size and variable probability in genetic operators are incorporated into GA. The rank sum weight method is applied to formulate the fitness function consisting of compliance, volume, connectivity and checkerboard pattern. To substantiate the proposed method design examples in the previous works are compared with respect to the number of function evaluation and objective function value. The comparative study shows that the compliance pattern based GA results in the reduction of computational cost to obtain the reasonable structural topology.

Conceptual design of buildings subjected to wind load by using topology optimization

  • Tang, Jiwu;Xie, Yi Min;Felicetti, Peter
    • Wind and Structures
    • /
    • v.18 no.1
    • /
    • pp.21-35
    • /
    • 2014
  • The latest developments in topology optimization are integrated with Computational Fluid Dynamics (CFD) for the conceptual design of building structures. The wind load on a building is simulated using CFD, and the structural response of the building is obtained from finite element analysis under the wind load obtained. Multiple wind directions are simulated within a single fluid domain by simply expanding the simulation domain. The bi-directional evolutionary structural optimization (BESO) algorithm with a scheme of material interpolation is extended for an automatic building topology optimization considering multiple wind loading cases. The proposed approach is demonstrated by a series of examples of optimum topology design of perimeter bracing systems of high-rise building structures.

Design of mulimeter-wave ultra-compact broadband MMIC amplifiers (밀리미터파 초소형 광대역 MMIC 증폭기 설계에 관한 연구)

  • 권영우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.8
    • /
    • pp.1733-1739
    • /
    • 1997
  • An ultra-compact milimeter-wave broadband MMIC amplifier was designed using a direct-coupled topology combined with optimum feedback design. Significant reductionin the chip size was possible by employing the direct-coupled topology. Bias resistors required for the direct-coupled topology were also used as feedback elements. Feedback was optimized for millimeter-wave frequencies using reactive elements. The fabricated MMIC amplifier was realized in a chip size of 0.8mm$^{[-992]}$ and showed gains higher than 8 dB from 12 to 44 GHz. An output power of 30mW was achieved at 44 GHz with a drain efficiency of 10%.

  • PDF

Topology and geometry optimization of different types of domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.1-25
    • /
    • 2016
  • Domes are architectural and elegant structures which cover a vast area with no interrupting columns in the middle, and with suitable shapes can be also economical. Domes are built in a wide variety of forms and specialized terms are available to describe them. According to their form, domes are given special names such as network, lamella, Schwedler, ribbed, and geodesic domes. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The network, lamella, ribbed and Schwedler domes are studied to determine the optimum number of rings, the optimum height of crown and tubular sections of these domes. The minimum volume of each dome is taken as the objective function. A simple procedure is defined to determine the dome structures configurations. This procedure includes calculating the joint coordinates and element constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). The wind loading act on domes according to ASCE 7-05 (American Society of Civil Engineers). This paper will explore the efficiency of various type of domes and compare them at the first stage to investigate the performance of these domes under different kind of loading. At the second stage the wind load on optimum design of domes are investigated for Schwedler dome. Optimization process is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for domes.

Topology Optimization of Structures in Plastic Deformation using Finite Element Limit Analysis (유한요소 극한해석을 이용한 소성변형에서의 구조물의 위상최적화)

  • Lee, Jong-Sup;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.603-608
    • /
    • 2008
  • It is well known that the topology optimization for plastic problem is not easy since the iterative analyses to evaluate the objective and cost function with respect to the design variation are very time-consuming. The finite element limit analysis is an efficient tool which is possible to predict collapse modes and sequential collapse loads of a structure considering not only large deformation but also plastic material behavior with moderate computing cost. In this paper, the optimum topology of a structure considering large and plastic deformation is obtained using the finite element limit analysis. To verify the constructed optimization code, topology optimizations of some typical problems are performed and the optimal topologies by elastic design and plastic design are compared.

  • PDF

Topology optimization of tie-down structure for transportation of metal cask containing spent nuclear fuel

  • Jeong, Gil-Eon;Choi, Woo-Seok;Cho, Sang Soon
    • Nuclear Engineering and Technology
    • /
    • v.53 no.7
    • /
    • pp.2268-2276
    • /
    • 2021
  • Spent nuclear fuel, which can degrade during long-term storage, must be transported intact in normal transport conditions. In this regard, many studies, including those involving Multi-Modal Transportation Test (MMTT) campaigns, have been conducted. In order to transport the spent fuel safely, a tie-down structure for supporting and transporting a cask containing the spent fuel is essential. To ensure its structural integrity, a method for finding an optimum conceptual design for the tie-down structure is presented. An optimized transportation test model of a tie-down structure for the KORAD-21 metal cask is derived based on the proposed optimization approach, and the transportation test model is manufactured by redesigning the optimized model to enable its producibility. The topology optimization approach presented in this paper can be used to obtain optimum conceptual designs of tie-down structures developed in the future.

Optimum bracing design under wind load by using topology optimization

  • Kutuk, M. Akif;Gov, Ibrahim
    • Wind and Structures
    • /
    • v.18 no.5
    • /
    • pp.497-510
    • /
    • 2014
  • Seismic and wind load performances of buildings are commonly improved by using bracing systems. In practice, standard bracing systems, such as X, Y, V, and K types are used. To determine the appropriate bracing type, the designer uses trial & error method among the standard bracings to obtain better results. However, using topology optimization yields more efficient bracing systems or new bracing can be developed depending on building and loading types. Determination of optimum bracing type for minimum deformation on a building under the effect of wind load is given in this study. A new bracing system is developed by using topology optimization. Element removal method is used to determine and remove the comparatively inefficient materials. Optimized bracing is compared with proposed bracing types available in the related literature. Maximum deformation value of building is used as performance indicator to compare effectiveness of different bracings to resist wind loads. The proposed bracing, yielded 99%, deformation reduction compared to the unbraced building.

Optimum design of FRP box-girder bridges

  • Upadhyay, Akhil;Kalyanaraman, V.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.5
    • /
    • pp.539-554
    • /
    • 2010
  • Light weight superstructure is beneficial for bridges in remote areas and in emergency erection. In such weight sensitive applications, combination of fibre reinforced plastics (FRP) as material and box-girders as a structural system have great scope. This combination offers various options to tailor structure and its elements but this flexibility poses greater challenge in optimum design. In this paper a procedure is derived for a generalised optimum design of FRP box-girder bridges, using genetic algorithms (GA). The formulation of the optimum design problem in the form of objective function and constraints is presented. Size, configuration and topology optimization are done simultaneously. A few optimum design studies are carried out to check the performance of the developed procedure and to get trends in the optimum design which will be helpful to the new designers.

Topology optimization of nonlinear single layer domes by a new metaheuristic

  • Gholizadeh, Saeed;Barati, Hamed
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.681-701
    • /
    • 2014
  • The main aim of this study is to propose an efficient meta-heuristic algorithm for topology optimization of geometrically nonlinear single layer domes by serially integration of computational advantages of firefly algorithm (FA) and particle swarm optimization (PSO). During the optimization process, the optimum number of rings, the optimum height of crown and tubular section of the member groups are determined considering geometric nonlinear behaviour of the domes. In the proposed algorithm, termed as FA-PSO, in the first stage an optimization process is accomplished using FA to explore the design space then, in the second stage, a local search is performed using PSO around the best solution found by FA. The optimum designs obtained by the proposed algorithm are compared with those reported in the literature and it is demonstrated that the FA-PSO converges to better solutions spending less computational cost emphasizing on the efficiency of the proposed algorithm.

Topology Optimization of Shell Structures Using Adaptive Inner-Front Level Set Method (AIFLSM) (적응적 내부 경계를 갖는 레벨셋 방법을 이용한 쉘 구조물의 위상최적설계)

  • Park, Kang-Soo;Youn, Sung-Kie
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.354-359
    • /
    • 2007
  • A new level set based topology optimization employing inner-front creation algorithm is presented. In the conventional level set based topology optimization, the optimum topology strongly depends on the initial level set distribution due to the incapability of inner-front creation during optimization process. In the present work, an inner-front creation algorithm is proposed, in which the sizes, positions, and number of new inner-fronts during the optimization process can be globally and consistently identified. To update the level set function during the optimization process, the least-squares finite element method is employed. As demonstrative examples for the flexibility and usefulness of the proposed method, the level set based topology optimization considering lightweight design of 3D shell structure is carried out.

  • PDF