• Title/Summary/Keyword: tool geometry

Search Result 542, Processing Time 0.034 seconds

Evaluation of Digital Elevation Model Created form SPOT 5/HRG Stereo Images (SPOT 5/HRG 입체영상으로부터 추출된 DEM의 평가)

  • Kim Yeon-Jun;Yu Young-Geol;Yang In-Tae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.153-158
    • /
    • 2006
  • A new High Resolution Geometry or HRG imaging instrument is developed by CNES to be carried on-board SPOT 5. The HRG instrument offers a higher ground resolution than that of the HRV/HRVIR on SPOT 1 - 4 satellites. The field width of HRG is 60 km, same as SPOT constellation. With two HRG instruments, a maximum swath of 120 km at 5 m resolution can be achieved. The generation of Digital Elevation Models (DEMs) from satellite stereo images scores over conventional methods of DEM generation using topographic maps and aerial photographs. This global availability of satellite images allows for quicker data processing for an equivalent area. In this study, a HRG stereo images of SPOT 5 over JECHEON has been used with Leica Photogrammetry Suite OrthoBASE Pro tool for the creation of a digital elevation model (DEM). The extracted DEM was compared to the reference DEM obtained from the contours of digital topographic map.

A Study on the Superelevation Measuring Accuracy using GPS-lNS Integrated System (GPS-INS 통합시스템을 이용한 도로의 편경사 측정 정확도 연구)

  • Jeong, Dong-Hun;Yun, Deok-Geun;Seong, Jeong-Gon
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.79-89
    • /
    • 2006
  • The purpose of this study is to propose a new method using the GPS-INS integrated system which measures the superelevation of a curved yoad rapidly and safely Also, using the CPS-INS integrated system. this Paper is to analyze the expected accuracy of the superelevation on the roads which are already opened for traffic. The superelevation of the roads which are already opened for traffic often changes by roads rehabilitation work such as resurfacing of Pavement and rutting However, it is difficult to measure 1,he changes of road geometry because or the high cost and the safety problem. If the measurement of superelevation using GPS-INS integrated system is used instead of existing conventional surveying method, the superelevation of road is expected to be measured accurately(under 0.4% RMSE) just by driving without interfering the traffic Therefore, the application of the GPS-INS integrated system is expected to be useful tool for measuring the superelevation of the roads.

Development of an Engineering Education Framework for Aerodynamic Shape Optimization

  • Kwon, Hyung-Il;Kim, Saji;Lee, Hakjin;Ryu, Minseok;Kim, Taehee;Choi, Seongim
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.297-309
    • /
    • 2013
  • Design optimization is a mathematical process to find an optimal solution through the use of formal optimization algorithms. Design plays a vital role in the engineering field; therefore, using design tools in education and research is becoming more and more important. Recently, numerical design optimization in fluid mechanics, which uses computational fluid dynamics (CFD), has numerous applications in the engineering field, because of the rapid development of high-performance computing resources. However, it is difficult to find design optimization software and contents for educational purposes in aerospace engineering. In the present study, we have developed an aerodynamic design framework specifically for an airfoil, based on the EDucation-research Integration through Simulation On the Net (EDISON) portal. The airfoil design framework is composed of three subparts: a geometry kernel, CFD flow analysis, and an optimization algorithm. Through a seamless interface among the subparts, an iterative design process is conducted. In addition, the CFD flow analysis and the design framework are provided through a web-based portal system, while the computation is taken care of by a supercomputing facility. In addition to the software development, educational contents are developed for lectures associated with design optimization in aerospace and mechanical engineering education programs. The software and content developed in this study is expected to be used as a tool for e-learning material, for education and research in universities.

Methods of Discontinuity Network Visualization in 3-D (불연속면 연결구조의 삼차원 가시화 기법에 관한 연구)

  • Noh, Young-Hwan;Um, Jeong-Gi
    • The Journal of Engineering Geology
    • /
    • v.22 no.4
    • /
    • pp.449-458
    • /
    • 2012
  • A sound understanding of the structural characteristics of fractured rock masses is important in designing and maintaining earth structures because their strength, deformability, and hydraulic behavior depend mainly on the characteristics of discontinuity network structures. Despite considerable progress in understanding the structural characteristics of rock masses, the complexity of discontinuity patterns has prevented satisfactory analysis based on a 3-D rock mass visualization model. This paper presents the results of studies performed to develop rock mass visualization in 3-D to analysis the mechanical and hydraulic behavior of fractured rock masses. General and particular solutions of non-linear equations of disk-shaped fractures have been derived to calculated lines of intersection and equivalent pipes. Also, program modules have been developed to perform the calculations. The procedures developed for the 3-D fractured rock mass visualization model can be used to characterize rock mass geometry and network systems effectively. The results obtained in this study will be refined and then combined for use as a tool for assessing geomechanical problems related to strength, deformability and hydraulic behaviors of the fractured rock masses.

A study on the Learning Polyhedra using 'Polyhedron' ('Polyhedron'을 활용한 다면체 학습에 관한 연구)

  • Kwon Sung-Yong
    • The Mathematical Education
    • /
    • v.45 no.2 s.113
    • /
    • pp.191-204
    • /
    • 2006
  • Computer technology has a potential to change the contents of school mathematics and the way of teaching mathematics. But in our country, the problem whether computer technology should be introduced into mathematics classroom or not was not resolved yet. As a tool, computer technology can be used by teachers who are confident of the effectiveness and who can use it skillfully and can help students to understand mathematics. The purpose of this study was to investigate the effective way to introduce and utilize computer technology based on the status quo of mathematics classroom setting. One possible way to utilize computer technology in mathematics classroom in spite of the lack of computer and the inaccessibility of useful software is using domain specific simulation software like 'Polyhedron'. 'Polyhedron', as we can guess from the name, can be used to explore regular and semi regular polyhedra and the relationship between them. Its functions are limited but it can visualize regular polyhedra, transform regular polyhedra into other polyhedra. So it is easier to operate than other dynamic geometry software like GSP. To investigate the effect of using this software in mathematics class, three classes(one in 6th grade from science education institute for the gifted, two in 7th grade) were chosen. Activities focused on the relationship between regular and semi regular polyhedra. After the class, several conclusions were drawn from the observation. First, 'Polyhedron' can be used effectively to explore the relationship between regular and semi regular polyhedra. Second, 'Polyhedron' can motivate students. Third, Students can understand the duality of polyhedra. Fourth, Students can visualize various polyhedra by reasoning. To help teachers in using technology, web sites like NCTM's illuminations and NLVM of Utah university need to be developed.

  • PDF

Resolving a velocity inversion at the geotechnical scale using the microtremor (passive seismic) survey method

  • Roberts James C.;Asten Michael W.
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.14-18
    • /
    • 2004
  • High levels of ambient noise and safety factors often limit the use of 'active-source' seismic methods for geotechnical investigations in urban environments. As an alternative, shear-wave velocity-depth profiles can be obtained by treating the background microtremor wave field as a stochastic process, rather than adopting the traditional approach of calculating velocity based on ray path geometry from a known source. A recent field test in Melbourne demonstrates the ability of the microtremor method, using only Rayleigh waves, to resolve a velocity inversion resulting from the presence of a hard, 12 m thick basalt flow overlying 25 m of softer alluvial sediments and weathered mudstone. Normally the presence of the weaker underlying sediments would lead to an ambiguous or incorrect interpretation with conventional seismic refraction methods. However, this layer of sediments is resolved by the microtremor method, and its inclusion is required in one-dimensional layered-earth modelling in order to reproduce the Rayleigh-wave coherency spectra computed from observed seismic noise records. Nearby borehole data provided both a guide for interpretation and a confirmation of the usefulness of the passive Rayleigh-wave microtremor method. Sensitivity analyses of resolvable modelling parameters demonstrate that estimates of shear velocities and layer thicknesses are accurate to within approximately $10\%\;to\;20\%$ using the spatial autocorrelation (SPAC) technique. Improved accuracy can be obtained by constraining shear velocities and/or layer thicknesses using independent site knowledge. Although there exists potential for ambiguity due to velocity-thickness equivalence, the microtremor method has significant potential as a site investigation tool in situations where the use of traditional seismic methods is limited.

Design of Spatial Relationship for 3D Geometry Model (3차원 기하모델에 대한 공간 관계 연산 설계)

  • Yi Dong-Heon;Hong Sung-Eon;Park Soo-Hong
    • Spatial Information Research
    • /
    • v.13 no.2 s.33
    • /
    • pp.119-128
    • /
    • 2005
  • Most spatial data handled in GIS is two-dimensional. These two-dimensional data is established by selecting 2D aspects form 3D, or by projecting 3D onto 2D space. During this conversion, without user's intention, data are abstracted and omitted. This unwanted data loss causes disadvantages such as restrictingof the range of data application and describing inaccurate real world. Recently, three dimensional data is getting wide interests and demands. One of the examplesis Database Management System which can store and manage three dimensional spatial data. However, this DBMS does not support spatial query which is the essence of the database management system. So, various studies are needed in this field. This research designs spatial relationship that is defined in space database standard using the three-dimension space model. The spatial data model, which is used in this research, is the one defined in OGC for GMS3, and designing tool is DE-9IM based on Point-Set Topology blow as the best method for topological operation.

  • PDF

Internal Flow Analysis of Seawater Cooling Pump using CFD (CFD를 이용한 해수냉각펌프의 내부유동 분석)

  • Bao, Ngoc Tran;Yang, Chang-jo;Kim, Bu-gi;Kim, Jun-ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.1
    • /
    • pp.104-111
    • /
    • 2017
  • This research focuses on simulation and visualization of flow field characteristics inside a centrifugal pump. The 3D numerical analysis was carried out by using a numerical CFD tool, addressing a Reynolds Average Navier-Stock code with a standard k-${\varepsilon}$ two-equation turbulence model. The simulation accounts for friction head loss due to rough walls at suction, impeller, discharge areas and volumetric head loss at impeller wear ring. A comparison of performance curves between simulation and experimentation is included, and it reveals a same trend of those results with a small difference of maximum 5 %. At best efficiency point, velocity vectors are smooth but it changes significantly under off-design point, a strong recirculation appears at the outlet of impeller passages near tongue area. A relatively uniform preassure distribution was observed around the impeller in despite of the tongue. Within the volute, because of its geometry, spiral vortexes formed, proving that the flow field in this region was relatively turbulent and unsteady.

A study of Quality evaluation for medical linear accelerator using Electronic Portal Imaging (전자포탈영상 (EPI)을 이용한 의료용 선형가속기의 성능평가에 관한 연구)

  • 윤성익;권수일;추성실
    • Progress in Medical Physics
    • /
    • v.9 no.2
    • /
    • pp.105-113
    • /
    • 1998
  • Accurate radiation dosimetric characters is very important to determine of dose to a radiotherapeutic patient. Medical linear accelerators have been developed not only its new quality of convenient operation but also electric moderation. It is reliable to measure more detail physical parameter that linac's internal ability. Typically, radiation dosimetric tool is classified ionization chamber, film, thermoluminescence dosimeter, etc. Nowaday, Electronic Portal Imaging Device is smeared in radiation field to verification of treatment region. EPID's image was focused that using both on-line image verification and absolutely minimum absorbed dose during radiotherapy. So, Electronic Portal Imaging was tested for quality evaluation of medical linear accelerator had its pure conditional flash. This study has performed symmetry, Light/Radiation field congruence, and energy check, geometry difference on wedge filter using a liquid filled ion chamber (EPID). Prior to irradiated on EPID, high energy photon beam is checked with ion chamber. Using these results more convenient dosimetric method is accomplished by EPID that taken digital image. Medical image is acquired with EPID too. Therefore, EPID can be analyzed by numerical information for what want to see or get more knowledge for natural human condition.

  • PDF

A Study I on the Sizing Accuracy of the Characterized Defects of the Reactor Vessel Head Penetrations (원자로헤드 관통관 결함의 검출 정확성 연구)

  • Chung Tae-hoon;Kim Han-Jong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.216-227
    • /
    • 2005
  • The head penetrations for control rod drive mechanism and instrumentation systems are installed at the reactor pressure vessel head of PWRs. Primary coolant water and the operating conditions of PWR plants can cause cracking of these nickel-based alloy through a process called primary water stress corrosion cracking (PWSCC). Inspection of the head penetrations to ensure the integrity of the head penetrations has been interested since reactor coolant leakages were found at U. S. reactors in 2000 and 2001. The complex geometry of the head penetrations and the very low echo amplitude from the fine, multiple flaws due to the nature of the see made it difficult to detect and size the flaws using conventional pulse-echo UT methods. Time-of-flight-diffraction technique, which utilizes the time difference between the flaw tips while pulse-echo does the flaw response amplitude from the flaw, has been selected for this inspection for it's best performance of the detection and sizing of the head penetration see flaws. This study defines the limits of the detectable and accurately sizable minimum flaw size which can be detected by the General TOFD and the Delta TOFD techniques for circumferentially and axially oriented flaws respectively. These results assures the reliability of the inspection techniques to detect and accurately size for various kind of flaws, and will also be utilized for the future development and qualifications of the TOFD techniques to enhance the detecting sensitivity and sizing accuracy of the flaws of the reactor head penetrations in nuclear power plants.

  • PDF