• Title/Summary/Keyword: time-varying characteristics

Search Result 650, Processing Time 0.028 seconds

Phase Transformation Characteristic of Nitinol Shape Memory Alloy with Annealing Treatment Conditions (어닐링 열처리 조건에 따른 NITINOL 형상기억합금의 상변환 특성 연구)

  • 여동진;윤성호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.426-429
    • /
    • 2003
  • In this study, phase transformation characteristics of Nitinol shape memory alloy with 54.5wt%Ni-45.5wt%Ti were investigated by varying with annealing treatment and cutting conditions through DSC(differential scanning calorimetry). Annealing treatment conditions were considered as heat treated time of 5 min, 15 min, 30 min, and 45 min, heat treated temperature of 40$0^{\circ}C$, 50$0^{\circ}C$, 5$25^{\circ}C$, 55$0^{\circ}C$, 575$^{\circ}C$, $600^{\circ}C$, $700^{\circ}C$, 80$0^{\circ}C$, and 90$0^{\circ}C$, and environmental condition of heat treatment under vacuum or air. Cutting conditions were considered as no cutting, one side cutting, and two side cutting. Tensile test was also conducted on Nitinol shape memory alloy to investigate thermomechanical characteristics by varying with annealing heat treatment histories. According to the results, annealing treatment and cutting conditions were found to significantly affect on phase transformation and thermomechanical characteristics of Nitinol shape memory alloy.

  • PDF

Time-Frequency Domain Analysis of Acoustic Signatures Using Pseudo Wigner-Ville Distribution

  • Jeon, Jae-Jin
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.674-679
    • /
    • 1994
  • Acoustic signal such as speech and scattered sound, are generally a nonstationary process whose frequency contents vary at any instant of time. For time-varying signal, whether a nonstationary or a deterministic transient signal, a traditional frequency domain representation does not reveal the contents of signal characteristics and may lead to erroneous results such as the loss of desired characteristics features or the mis-interpretation for a wrong conclusion. A time-frequency domain representation is needed to characterize such signatures. Pseudo Wigner-Ville distribution (PWVD) is ideally suited for portraying nonstationary signal time-frequency domain and carried out by adapting the fast Fourier transform algorithm. In this paper, the important properties of PWVD were investigated using both stationary and nonstationry signatures by numerical examples PWVD was applied to acoustic sigtnatures to demonstrate its application for time-ferquency domain analysis.

  • PDF

Enhanced data-driven simulation of non-stationary winds using DPOD based coherence matrix decomposition

  • Liyuan Cao;Jiahao Lu;Chunxiang Li
    • Wind and Structures
    • /
    • v.39 no.2
    • /
    • pp.125-140
    • /
    • 2024
  • The simulation of non-stationary wind velocity is particularly crucial for the wind resistant design of slender structures. Recently, some data-driven simulation methods have received much attention due to their straightforwardness. However, as the number of simulation points increases, it will face efficiency issues. Under such a background, in this paper, a time-varying coherence matrix decomposition method based on Diagonal Proper Orthogonal Decomposition (DPOD) interpolation is proposed for the data-driven simulation of non-stationary wind velocity based on S-transform (ST). Its core idea is to use coherence matrix decomposition instead of the decomposition of the measured time-frequency power spectrum matrix based on ST. The decomposition result of the time-varying coherence matrix is relatively smooth, so DPOD interpolation can be introduced to accelerate its decomposition, and the DPOD interpolation technology is extended to the simulation based on measured wind velocity. The numerical experiment has shown that the reconstruction results of coherence matrix interpolation are consistent with the target values, and the interpolation calculation efficiency is higher than that of the coherence matrix time-frequency interpolation method and the coherence matrix POD interpolation method. Compared to existing data-driven simulation methods, it addresses the efficiency issue in simulations where the number of Cholesky decompositions increases with the increase of simulation points, significantly enhancing the efficiency of simulating multivariate non-stationary wind velocities. Meanwhile, the simulation data preserved the time-frequency characteristics of the measured wind velocity well.

Pspice Model of a ZnO Varistor for Impulse Current (임펄스 전류에 대한 ZnO 바리스터의 Pspice 모델)

  • Lee, B.H.;Kong, Y.H.;Lee, D.M.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2161-2163
    • /
    • 1999
  • Generally, ZnO varistors have dynamic characteristics that the cut-off voltage increases as the time to crest of the varistor current decreases. Dynamic characteristics of ZnO varistor are the most important factor in region of the steep front discharge current particularly. Also, V-I characteristics of ZnO varistor have hysterisis loop in time domain and frequency dependency. This paper deals with ZnO varistor numerical equation and modeling method which takes the behavior of varying clamping voltage into consideration during the time to crest, in range of $1{\mu}m{\sim}50{\mu}m$, of impulse current applied to a ZnO varistor. The simulated results by the proposed model are compared with experimental results for each of the impulse current.

  • PDF

Performance Improvement of Low Complexity LS Channel Estimation for OFDM in Fast Time Varying Channels (고속 시변 채널 OFDM을 위한 저복잡도 LS 채널 예측의 성능 개선)

  • Lim, Dong-Min
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.25-32
    • /
    • 2012
  • In this paper, we propose a method for improving the performance of low complexity LS channel estimation for OFDM in fast time varying channels. The CE-BEM channel model used for the low complexity LS channel estimation has a problem on its own and deteriorates channel estimation performance. In this paper, we first use time domain windowing in order to remove the effect of ICI caused by data symbols. Then samples are taken from the results of the LS channel estimation and the effects of the windowing are removed from them. For resolving the defect of CE-BEM, the channel responses are recovered by interpolating the resultant samples with DPSS employed as basis functions the characteristics of which is well matched to the time variation of the channel. Computer simulations show that the proposed channel estimation method gives rise to performance improvement over conventional methods especially when channel variation is very fast and confirm that not only which type of functions is selected for the basis but how many functions are used for the basis is another key factor to performance improvement.

Robust Model-Following Controller for Uncertain Dynamical Systems by State-Space Representation (불확실한 동적 시스템의 상태공간 표현 강인 모델추종 제어기)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.12
    • /
    • pp.575-583
    • /
    • 2001
  • It is hard to obtain good robust performance and robust stability for uncertain and time-varying system. The robust 2-DOF controller is frequently used to obtain the desired response and the good robustness. Two controllers can be independently designed. Generally, one controller reduces sensitivity to parameter variations, nonlinear effects, and other disturbances. On the other hand, the other controller reduces the error between the desired command and output. In this paper, the various robust perfect MFCs(model-following controllers) combined with TDC(Time Delay Control) are designed, and the imperfect stable MFC combined with TDC and SMC(Sliding Mode Control) is proposed. These controllers are based on the method of designing robust 2-DOF controllers for dynamic system with uncertainty. The performance of the proposed imperfect sable MFC has been evaluated through computer simulations. The simulation results indicate that the proposed controller shows the excellent performance characteristics for an overhead crane with uncertain and time-varying parameters.

  • PDF

Efficient buffeting analysis under non-stationary winds and application to a mountain bridge

  • Su, Yanwen;Huang, Guoqing;Liu, Ruili;Zeng, Yongping
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.89-104
    • /
    • 2021
  • Non-synoptic winds generated by tornadoes, downbursts or gust fronts exhibit significant non-stationarity and can cause significant wind load effect on flexible structures such as long-span bridges. However, conventional assumptions on stationarity used to evaluate the structural wind-induced vibration are inadequate. In this paper, an efficient frequency domain scheme based on fast CQC method, which can predict non-stationary buffeting random responses of long-span bridges, is presented, and then this approach is applied to evaluate the buffeting response of a long-span suspension bridge located in a complex mountainous wind environment as an example. In this study, the data-driven method based on one available measured wind speed sample is firstly presented to establish non-stationary wind models, including time-varying mean wind speed, time-varying intensity envelope function and uniformly modulated fluctuating spectrum. Then, a linear time-variant (LTV) system based on the proposed scheme can be generally applied to calculate the non-stationary buffeting responses. The effectiveness and accuracy of the proposed scheme are verified through Monte Carlo time domain simulation implemented in ANSYS platform. Also, the transient effect nature of the bridge responses is further illustrated by comparison of the non-stationary, quasistationary and steady-state cases. Finally, buffeting response analysis with traditional stationary treatment (10 min constant mean plus stationary wind fluctuation) is performed to illustrate the importance of the non-stationary characteristics embedded in original wind speed samples.

An overlapping decomposed filter for INS initial alignment (관성항법장치의 초기정렬을 위한 중복 분해 필터)

  • 박찬국;이장규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.136-141
    • /
    • 1991
  • An Overlapping Decomposed Filter(ODF) accomplishing an initial alignment of an INS is proposed in this paper. The proposed filter improves the observable condition and reduces the filtering computation time. Its good performance has been verified by simulation. Completely observable and controllable conditions of INS error model derived from psi-angle approach are introduced under varying sensor characteristics vary. The east components of gyro and accelerometer have to be the first order markov process and the rest of them are the characteristics of the random walk or first order markov process.

  • PDF

Adaptive neural control for compensation of time varying characteristics (시스템의 시변성을 보상하기 위한 신경회로망을 이용한 적응제어)

  • 이영태;장준오;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.224-229
    • /
    • 1992
  • We investigate a neural network as a dynamic system controller when system characteristics are abruptly changing. The shape of sigmoid functions are determined by autotuing method for the optimum sigmoid function of the neural networks. By using information stored in the identifying network a novel algorithm that can adapt the control action of the controller has been developed. Robustness can be seen from its ability to adjust large variations of parameters. The potential of the proposed method is demonstrated by simulations.

  • PDF

A Study on the Dynamic Characteristics of a Turbocharged Diesel Engine (터보 과급 디젤 기관의 동특성에 관한 연구)

  • Choi, N.J.;Lee, C.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.1
    • /
    • pp.143-154
    • /
    • 1995
  • This study investigates the response characteristics of a four-cylinder four-stroke turbocharged diesel engine by using computer simulation and experiments when a rapid acceleration is applied to the fuelpump rack. In the theoretical analysis, linearization method is used to avoid the difficulty on the complex nonlinear functions. Comppressor exit pressure, pressure and temperature of turbine inlet, and turbocharger speed are chosen as the independent variables of transfer functions which represent the dynamic characteristics of the turbocharger system, and expressed as the functions with respect to the time. Experiments on the same eigine system are also carried out to prove the validity of theoretical study. Further, this study carried an experiment for improving transient response performance by injecting air into the inlet manifold under the rapid accelerating conditions. The effects of air injection on the response performances are also represented at varying conditions such as injection pressure, injection period, accelerating rate, accelerating time, engine speed and load.

  • PDF