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ABSTRACT Acoustic signal such as speech and scattered sound, are generally 
a nonstationary process whose frequency contents vary at any instant of time. 
For time-varying signal, whether a nonstationary or a deterministic transient 
signal, a traditional frequency domain representation does not reveal the contents 
of signal characteristics and may lead to erroneous results such as the loss of 
desired characteristics features or the misinterpretation for a wrong conclusion. 
A time-frequency domain representation is needed to characterize such 
signatures. Pseudo Wigner-Ville distribution(PWVD) is ideally suited for 
portraying nonstationary signal time-frequency domain and carried out by 
adapting the fast Fourier transform algorithm.
In this paper, the important properties of PWVD were investigated using both 
stationary and nonstationary signatures by numerical examples PWVD was 
applied to acoustic signatures to demonstrate its application for time-frequency 
domain analysis.

1. INTRODUCTION

The physical condition and state of the objects those operate in transient mode 
or those are in the scattered sound field, are difficult to predict with any degree 
of accuracy. The conventional spectrum analysis of a signal provides averaged 
spectral values which are independent of time and portray the phenomena under 
the assumption that the signal is a stationary process. However many 
signatures such as speech, scattered sound and the radiated noise generated by 
mechanical vibration source with faults are generally a nonstationary process 
whose frequency content varies at any instant of time. For time varying signal, 
a traditional spectrum representation does not reveal the dynamic features of the 
signal and may lead to erroneous results such as the misinterpretation for a 
wrong conclusions. A time-frequency domain representation is needed to 
characterize such signatures. The PWVD is a three dimensionaKtime, 
frequency, magnitude) representation of an input signal and is ideally suited for 
describing transient or other nonstationary phenomena. The Wigner 
distribution function(WDF) has been used in the areas of optics and speech 
analysis[l,2,3]- Wahl and Bolton[4,5] used it to identify structure—bome noise 
components. The Wigner distribution function recently is proposed in the area 
of machinery condition monitoring and its diagnostics such as gear fault 
detection.
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In this paper, the important properties of PWVD were investigated using both 
stationary and nonstationary signatures by numerical examples PWVD was 
applied to acoustic signatures to demonstrate its application for time - frequenc y 
domain analysis.

2. PSEUDO WIGNER-VILLE DISTRIBUTION FUNCTION

The WDF is a three dimensional(tiiner frequency, amplitude) representation of an 
* input signal and is ideally suited describing transient or other nonstationary 

phenomena.
The Wigner distribution function is given as[6]

广8

to(財)二 I s*(・t/2) s (捉项/2) e ~J^dx (1)
J - 8

where s(t) is the complex time signal, * denotes complex conjugate. This 
formula has a pattern of a instantaneous power spectrum[7L There ai^e two 

distinct advantages for the calculation of the WDF. First, it has the form of 

the Fourier transform and the existing FFT algorithm can be adaped for its 

computation. Second, for a finite time signal, its integration is finite within the 

record length of the existing signal.

The discrete type WDF developed by Classen and Mecklenbrauker[8] is 
expressed by,

X=oo
u;(t,w) = 2 S e 2 u T s(f+x) s*(H) (2)

X =- oo

The discrete version of Eq.(2) for a sampled signal s(n) has the form

w(ltk) = KT Ss(/+n) s*(Z~n)e ~7(4JI/N)n\/c = 0,1,2,.(3) 
IV ”0

Eq.(3) indicates the WDF has a periodicity of N/2 [9], Hence, even when the 
sampling of s(t) satisfies the Nyquist criteria, there are still aliasing componente 
in WDF. A simple approach to avoid aliasing is to use an analytic signal 
before computing the WDF. The analytic signal is obtained by Hilbert 
transformtl]. A practical signal is a real value.
To calculate the Wigner distribution of the sampled data, it is necessary that 
Eq.(3) be modified to Eq.(4), because the WDF has N/2 periodicity.

u)(m此 fcAu)二 2A S s[ (m + n) At] s*[ (m-n) A打。-加"林) (4)
n = Q

where Aw = n/(2NAt) and At the sampling interval. The algorithm used in this 
paper is based on one written by Wahl and Bolton and can be expressed as：

kM) - RE { 2Ar FFT\corr(i)] }

corr(i) - + 1 + m > i (5)

二 0, m < i

where 1 < i < N+lt corr(2N~i + 2)二 corr*(z), 2 < i < A* ,
The frequency resolution in Eq.(5) is one forth the resolution of an ordinary1 
power spectrum density function, that is, it has a high resolution than the result, 
of FFT of the original N point time record.
There are two methods to suppress the interference components of the WDF. 
Classen and Mecklenbrauker desribe the application of a sliding window in the 
time domain before calculating WDF. The WDF obtained with a window 
function is called the pseudo-WDF. A second option is to smooth the WDF 

675



with a sliding averaging window in the time-frequency plane. In both case the 
result is to deemphasize components arising from calculations and to emphasize 
deterministic components. Obviously, averaging a Wigner-Ville distribution will 
result in a PWVD.
In this paper, a sliding exponential window in the time-frequency domain was 
chosen. That is, a Gaussian window function, G(t,아) is selected to reduce the 
interference and to avoid the negative values as follows- let

]

2兀SL

then

G(t, w)二

-[甘/如¥) +(站/2国)]

W) 2^~" J J"w(t , w ) G(t~t , w ) dt c&) 〉0

(6)

⑺

where ox ,(儿 >0 and OtOu〉1/2. The time and frequency resolution's At 
and Au of this Gaussian window are related by

二 jKt, 。시 二 ZcAw (8)

in the discrete form. Selecting t and (J to be the multiple of time and frequency 
steps, the sampled Gaussian window function is expressed by,

dry c)二 ____________i__ 〃 -[(p3/^2)+(q2/^2)]G(q, q) - (9)

where p and q are integer numbers in the range ±2j and ±2kt respectively. 
The convolution of the sampled WDF and the Gaussian window function can be 
evaluated as follows：

w (Z, m}二
쁛 史 實 G(pT, q-m)

乙儿 p - l~j Q-m- k
(10)

3. EXAMPLES AND DISCUSSIONS

A signatures generated by machinery and scattered sound involve many 
information about operating condition and the current status of target. It can be 
obtained the information from the measured signatures by applying the analysis 
tools appropriate to the characteristics of signal for the time records. As 
discussed in the previous sections, Wigner distribution is a signal transformation 
that is particularly suited for the time-frequency analysis of nonstationary 
signals. There are many advantages of using PWVD for both steady and 
transient signals[10, 11].

A. Sweeping-up Harmonic Wave

Fig.l is PWVD of the signal which sweeps up along the frequency with a 
logarithmic rate, that is, the sweep rate is propotional to the square root of 
time. It was found that the maximum magnitude of the PWVD increase with 
incresing the frequency. This fact is shown that the PWVD of the stable 
signal has a larger magnitude than the unstable signals although having the 
same magnitude in time domain and PWVD is the good tool for the analysis of 
the stability of the signal. The following functions were used to generate the 
desired signal：

s(Q - 4 cos ( 2兀(30 + 60 U t } (11)
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Figure 1. PWVD of a signal of sweeping-up with a logarithmic rate with time. 
(fs-256 Hz, N=256 and smoothing window size - 10x10).

B. Scattering form a Cylindrical Shell

Scattering from a finite object provides many interesting subjects for the 
analysis of wave propagation phenomena in elastic body. Figure 2 and 3 are 
the measured scattered ultrasound from a cylindrical shell with and without a 
stiffener at middle point in longitudinal direction, respectively. The cylindrical 
shell is made of 0.6 cm thick steel with 22.12 cm in diameter, 131.3 cm long 
and has a ring stiffener, located at middle 68 cm from the front. The source 
signal used in the experiment was the continuous sine wave with pulse length 
0.1 msec and center frequency 50 kHz. The data used here were from the 
backscattered sound coming from the test cylinder. An angle is 30° in figure 2 
and 40° in figure 3 between the longitudinal axis of test cylinder and the 
acoustic axis of transducer or receiver. The scattered sound consists of 
components whose sources include specular reflection, creeping wave reradiation 
and so on. Each of them has different phase velocities and frequency 
components. The first peak of time pattern in figure 2(a) is by specular 
reflection included an elongation effect by front end of cylinder and the second 
one is by reradiation due to stiffener.
Figure 2(b) indicates the different frequency components of the first and second 
peaks for the same sound source. From this figure, we can see the frequency 
change by the characteristics of structure. If we applied the traditional spectral 
method to figure 2(a), we can see the frequency change by structure. WDF 
well represents the global feature about signatures including the transient 
components.
Figure 3 is the measured scattered ultrasound from a cylindrical shell without a 
stiffener at middle point in longitudinal direction, that is, homogeneous shell. 
From figure 3, we can see the incident angle is the angle around the coincident 
one. Figure 3(b) indicates the change of frequency contents and the sound 
radiation by coincident effects. And the last peak is reradiated by the end of 
cylidrical shell. PWVD well represents the global features along the time axis 
including the transient components.

4. CONCLUSIONS
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The pseudo Wigner-Ville distribution has been investigated and applied to 
analyzing nonstationary signals typical of transient acoustical signatures. The 
results of this research will be a valuable analysis for condition monitoring of 
an objects by scattered sound. The following conclusion can be drawn：

(1) The PWVD is ideally suited for portraying nonstationary time signals as 
well as stationary signals.

(2) The use of analytic signal in calculating the Wignerdistribution eliminates 
aliasing problems.

(3) The Gaussian window function for smoothing the Wigner-Ville distribution 
is very effective and the presence of cross-terms is significantly reduced.
(4) The PWVD characterizes the time-frequency domain distribution of the 

signal well and may be a useful tool for analysis of acoustic signatures with 
transient conditions.
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Figure 2. Time-frequency localization of WDF, (a) time signal, (b) 3-D and 
contour plots of its PWVD (fs=250 kHz, N=512).
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Figure 3. Time-frequency localization of PWVDt (a) 
contour plots of its PWVD (f$=250 kHz, N=512).
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