• Title/Summary/Keyword: time-switching

Search Result 1,904, Processing Time 0.041 seconds

Starting Current Application for Magnetic Stimulation

  • Choi, Sun-Seob;Bo, Gak-Hwang;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • A power supply for magnetic-stimulation devices was designed via a control algorithm that involved a start current application based on a resonant converter. In this study, a new power supply for magnetic-stimulation devices was designed by controlling the pulse repetition frequency and pulse width. The power density could be controlled using the start-current-compensation and ZCS (zero-current switching) resonant converter. The results revealed a high-repetition-frequency, high-power magnetic-stimulation device. It was found that the stimulation coil current pulse width and that pulse repetition frequency could be controlled within the range of 200-450 ${\mu}S$ and 200-900 pps, respectively. The magnetic-stimulation device in this study consisted of a stimulation coil device and a power supply system. The maximum power of the stimulation coil from one discharge was 130 W, which was increased to 260 W using an additional reciprocating discharge. The output voltage was kept stable in a sinusoidal waveform regardless of the load fluctuations by forming voltage and current control using a deadbeat controller without increasing the current rating at the starting time. This paper describes this magnetic-stimulation device to which the start current was applied.

Optimization of Q-switched Operation at a Laser-Diode Pumped Nd:YAG Ceramic Laser (반도체레이저 여기 세라믹 Nd:YAG 레이저에서 Q-스위칭 동작 최적화)

  • Shin, Dong-Joon;Kim, Byung-Tai;Kim, Duck-Lae
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.4
    • /
    • pp.320-326
    • /
    • 2008
  • The output characteristics of a laser-diode pumped electrooptic Q-switched Nd:YAG ceramic laser were investigated. The output energy of a Q-switched Nd:YAG ceramic laser was optimized under an output coupler reflectivity of 77%, a laser-diode pulse width of $1,000\;{\mu}s$, and a delay time of $985\;{\mu}s$. The output energy of the Q-switched pulse was measured to be 0.35 mJ with a pulse width of 4 ns under a pump energy of 17.9 mJ. The output efficiency and the peak power were 1.9% and 87.5 kW, respectively.

Hypergraph Game Theoretic Solutions for Load Aware Dynamic Access of Ultra-dense Small Cell Networks

  • Zhu, Xucheng;Xu, Yuhua;Liu, Xin;Zhang, Yuli;Sun, Youming;Du, Zhiyong;Liu, Dianxiong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.494-513
    • /
    • 2019
  • A multi-channel access problem based on hypergraph model in ultra-dense small cell networks is studied in this paper. Due to the hyper-dense deployment of samll cells and the low-powered equipment, cumulative interference becomes an important problem besides the direct interference. The traditional binary interference model cannot capture the complicated interference relationship. In order to overcome this shortcoming, we use the hypergraph model to describe the cumulative interference relation among small cells. We formulate the multi-channel access problem based on hypergraph as two local altruistic games. The first game aims at minimizing the protocol MAC layer interference, which requires less information exchange and can converge faster. The second game aims at minimizing the physical layer interference. It needs more information interaction and converges slower, obtaining better performance. The two modeled games are both proved to be exact potential games, which admit at least one pure Nash Equilibrium (NE). To provide information exchange and reduce convergecne time, a cloud-based centralized-distributed algorithm is designed. Simulation results show that the proposed hypergraph models are both superior to the existing binary models and show the pros and cons of the two methods in different aspects.

A Low-Computation Indirect Model Predictive Control for Modular Multilevel Converters

  • Ma, Wenzhong;Sun, Peng;Zhou, Guanyu;Sailijiang, Gulipali;Zhang, Ziang;Liu, Yong
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.529-539
    • /
    • 2019
  • The modular multilevel converter (MMC) has become a promising topology for high-voltage direct current (HVDC) transmission systems. To control a MMC system properly, the ac-side current, circulating current and submodule (SM) capacitor voltage are taken into consideration. This paper proposes a low-computation indirect model predictive control (IMPC) strategy that takes advantages of the conventional MPC and has no weighting factors. The cost function and duty cycle are introduced to minimize the tracking error of the ac-side current and to eliminate the circulating current. An optimized merge sort (OMS) algorithm is applied to keep the SM capacitor voltages balanced. The proposed IMPC strategy effectively reduces the controller complexity and computational burden. In this paper, a discrete-time mathematical model of a MMC system is developed and the duty ratio of switching state is designed. In addition, a simulation of an eleven-level MMC system based on MATLAB/Simulink and a five-level experimental setup are built to evaluate the feasibility and performance of the proposed low-computation IMPC strategy.

Interleaved High Step-Up Boost Converter

  • Ma, Penghui;Liang, Wenjuan;Chen, Hao;Zhang, Yubo;Hu, Xuefeng
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.665-675
    • /
    • 2019
  • Renewable energy based on photovoltaic systems is beginning to play an important role to supply power to remote areas all over the world. Owing to the lower output voltage of photovoltaic arrays, high gain DC-DC converters with a high efficiency are required in practice. This paper presents a novel interleaved DC-DC boost converter with a high voltage gain, where the input terminal is interlaced in parallel and the output terminal is staggered in series (IPOSB). The IPOSB configuration can reduce input current ripples because two inductors are interlaced in parallel. The double output capacitors are charged in staggered parallel and discharged in series for the load. Therefore, IPOSB can attain a high step-up conversion and a lower output voltage ripple. In addtion, the output voltage can be automatically divided by two capacitors, without the need for extra sharing control methods. At the same time, the voltage stress of the power devices is lowered. The inrush current problem of capacitors is restrained by the inductor when compared with high gain converters with a switching-capacitor structure. The working principle and steady-state characteristics of the converter are analyzed in detail. The correctness of the theoretical analysis is verified by experimental results.

Optimal Two Degrees-of-Freedom Based Neutral Point Potential Control for Three-Level Neutral Point Clamped Converters

  • Guan, Bo;Doki, Shinji
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.119-133
    • /
    • 2019
  • Although the dual modulation wave method can solve the low-frequency neutral point potential (NPP) fluctuation problem for three-level neutral point clamped converters, it also increases the switching frequency and limits the zero-sequence voltage. That makes it harmful when dealing with the NPP drift problem if the converter suffers from a long dead time or asymmetric loads. By introducing two degrees of freedom (2-DOF), an NPP control based on a search optimization method can demonstrate its ability to cope with the above mentioned two types of NPP problems. However, the amount of calculations for obtaining an optimal 2-DOF is so large that the method cannot be applied to certain industrial applications with an inexpensive digital signal processor. In this paper, a novel optimal 2-DOF-based NPP control is proposed. The relationships between the NPP and the 2-DOF are analyzed and a method for directly determining the optimal 2-DOF is also discussed. Using a direct calculation method, the amount of calculations is significantly reduced. In addition, the proposed method is able to maintain the strongest control ability for the two types of NPP problems. Finally, some experimental results are given to confirm the validity and feasibility of the proposed method.

Temporal and Spatial Traffic Analysis Based on Human Mobility for Energy Efficient Cellular Network

  • Li, Zhigang;Wang, Xin;Zhang, Junsong;Huang, Wei;Tian, Ye
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.1
    • /
    • pp.114-130
    • /
    • 2021
  • With the drastic growth of Information and Communication Technology (ICT) industry, global energy consumption is exponentially increased by mobile communications. The huge energy consumption and increased environmental awareness have triggered great interests on the research of dynamic distribution of cell user and traffic, and then designing the energy efficient cellular network. In this paper, we explore the temporal and spatial characteristics of human mobility and traffic distribution using real data set. The analysis results of cell traffic illustrate the tidal effect in temporal and spatial dimensions and obvious periodic characteristics which can be used to design Base Station (BS) dynamic with sleeping or shut-down strategy. At the same time, we designed a new Cell Zooming and BS cooperation mode. Through simulation experiments, we found that running in this mode can save about 35% of energy consumption and guarantee the required quality of service.

Mobile-based Educational PLC Environment Construction Model

  • Park, Seong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.1
    • /
    • pp.61-67
    • /
    • 2022
  • In this paper, we propose a model that can convert some of the simulation program resources to a mobile environment. Recently, smart factories that use PLCs as controllers in the manufacturing industry are rapidly becoming widespread. However, in the situation where it is difficult to operate due to the shortage of PLC operation personnel, the actual situation is that a platform for PLC operation education is necessary. Currently most PLC-related educational platforms are based on 2D, which makes accurate learning difficult and difficult. When a simulation program is applied to distance learning in a general PC environment, many elements are displayed on the monitor, which makes screen switching inconvenient. Experiments with the proposed model confirmed that there was no frame deterioration under general circumstances. The average response time by the request frame was 102 ms, and it was judged that the learner was not at the level of experiencing the system delay.

Study on Current Conditioning Process for Improving Withstand Voltage Performance of Vacuum Interrupter (진공인터럽터의 내전압 성능 향상을 위한 전류컨디셔닝 기법 연구)

  • Cha, Young-kwang;Lee, IL-Hoi;Jeon, Ki-Beom;Jang, Ji-Hoon;Ju, Heung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.480-487
    • /
    • 2022
  • As a process to improve the insulation performance of VIs (Vacuum Interrupters), AC voltage conditioning is generally adopted by many manufacturers. Although the insulation performance is enhanced easily with AC Voltage conditioning, it has limitations when high recovery voltage is required due to high voltage rate or capacitive current switching. In particular, impurities such as oxides segregated on the electrode surface can be removed not by the energy level of the voltage conditioning but by the higher energy level achieved by the current conditioning process In this article, the current conditioning was carried out in various conditions and its validity was examined. The current conditioning was processed by changing the amplitude of applied current, arc time, the number of tests, and frequency. The insulation performance and the status of contact surface were checked as well. We concluded that as the applied charge quantity and the conditioning coverage area increase, the conditioning effect is much higher.

Fluid Dynamics Analysis and Experimental Trial to Improve the Switching Performance of Eco-friendly Gas Insulated Switch (친환경 가스개폐기 개폐성능 향상을 위한 유동해석 및 실험)

  • Yu, Lyun;Ahn, Kil-Young;Kim, Young-Geun;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.42-49
    • /
    • 2022
  • An underground electric switch is a high-voltage switch used in distribution network systems for a reliable power supply. Many studies are being conducted to expand the switch to use an eco-friendly gas using dry air instead of SF6 gas to reduce greenhouse gas emissions. In this study, a flow analysis model was established to improve the performance of an eco-friendly gas switch. The results were compared and reviewed through experiments. For the optimal arc grid design applied to the switch, the flow characteristics based on the flow path configuration and the changes in arcing time for each configuration were compared. Flow analysis can predict the switch flow distribution, and a comparative review of the flow path configurations of various methods is possible.