DOI QR코드

DOI QR Code

Optimization of Q-switched Operation at a Laser-Diode Pumped Nd:YAG Ceramic Laser

반도체레이저 여기 세라믹 Nd:YAG 레이저에서 Q-스위칭 동작 최적화

  • Shin, Dong-Joon (Department of Laser & Optical information Engineering, Cheongju University) ;
  • Kim, Byung-Tai (Department of Laser & Optical information Engineering, Cheongju University) ;
  • Kim, Duck-Lae (Medical Laser and Device Research Center, Dankook University)
  • 신동준 (청주대학교 레이저광정보공학과) ;
  • 김병태 (청주대학교 레이저광정보공학과) ;
  • 김덕래 (단국대학교 의학레이저의료기기연구센터)
  • Published : 2008.08.25

Abstract

The output characteristics of a laser-diode pumped electrooptic Q-switched Nd:YAG ceramic laser were investigated. The output energy of a Q-switched Nd:YAG ceramic laser was optimized under an output coupler reflectivity of 77%, a laser-diode pulse width of $1,000\;{\mu}s$, and a delay time of $985\;{\mu}s$. The output energy of the Q-switched pulse was measured to be 0.35 mJ with a pulse width of 4 ns under a pump energy of 17.9 mJ. The output efficiency and the peak power were 1.9% and 87.5 kW, respectively.

광섬유 연결 반도체레이저 여기 세라믹 Nd:YAG 레이저의 전기광학 Q-스위칭 출력 특성에 대해 연구하였다. 세라믹 Nd:YAG 레이저의 Q-스위칭은 여기원의 펄스폭 $1,000\;{\mu}s$, 출력 거울의 반사율 77% 및 지연시간 $985\;{\mu}s$에서 최적화되었다. 여기 에너지 17.9 mJ에서 0.35 mJ의 Q-스위칭된 출력 에너지와 약 4 ns의 펄스폭이 측정되어 1.9%의 출력 효율과 87.5 kW의 첨두 출력을 나타내었다.

Keywords

References

  1. You Wang and Hirofumi Kan, “Optimization algorithm for the pump structure of diode side-pumped solid-state lasers,” Optics and Lasers in Engineering, vol. 45, pp. 93-105, 2007 https://doi.org/10.1016/j.optlaseng.2006.06.005
  2. Kunihiko Washio, “Overview and Recent Topics in Industrial Laser Applications in Japan,” Quantum Electronics and Laser Science Conference, pp. 1, 2007
  3. Kathy Kincade, “Collaboration and competition breed industrial-laser success,” Laser Focus World, vol. 38, 2002
  4. “Ceramic YAGs set to challenge single crystals,” Opto & Laser Europe, 2001
  5. Y. Rabinovitch et al., “Transparent polycrystalline neodymium doped YAG:synthesis parameter, laser efficiency,” Optical Materials, vol. 24, pp. 345-351, 2003 https://doi.org/10.1016/S0925-3467(03)00148-4
  6. A. Ikesue and Yan Lin Aung, “Synthesis and Performance of Advanced Ceramic Laser,” J. Am. Ceram. Soc., vol. 89, pp. 1936-1944, 2006 https://doi.org/10.1111/j.1551-2916.2006.01043.x
  7. A. Ikesue, T. Kinoshita, K. Kamata, and K. Yoshida, “Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers,” J. Am. Ceram. Soc., vol. 78, pp. 1033-1040, 1995 https://doi.org/10.1111/j.1151-2916.1995.tb08433.x
  8. K. ueda, “Ytterbium-doped tunable ceramic laser,” Proc. Conf. Lasers and Electro-optics Europe, 2005. CLEO/Europe, pp. 2, 2005
  9. J. Lu et al., “110 W ceramic $Nd^{+3}:Y_3Al_5O_{12}$ laser,” Appl. Phys., vol. B 79, pp. 25-28, 2004 https://doi.org/10.1007/s00340-004-1511-9
  10. Ichiro shoji, Yoichi sato, sunao Kurimura, Voicu Lupei, Takunori Taira, Akio Ikesue, and Kinio Yoshida, “Thermal-Birefringence-induced depolarization in Nd:YAG ceramics,” Optics Letters, vol. 27, pp. 234-236, 2002 https://doi.org/10.1364/OL.27.000234
  11. 김덕래,김영식,김병태,“광섬유 연결 반도체레이저 여기 세라믹 Nd:YAG 레이저에서 열렌즈 효과의 보상,” 한국광학회지, 제 18권 3호, pp. 208-215, 2007 https://doi.org/10.3807/HKH.2007.18.3.208
  12. J. Lu et al., “Optical properties and highly efficient laser oscillation of Nd:YAG ceramics,” Appl. Phys., vol. B 71, pp. 469-473, 2000
  13. J. Dong, J. Lu, A. Shirakawa, and K. Ueda, “Optimization of the laser performance in $Nd^{3+}$:YAG ceramic microchip lasers,” Appl. Phys., vol. B 80, pp. 39-43, 2005
  14. 옥창민,김병태,김덕래,“광섬유 연결 반도체레이저 여기 세라믹 Nd:YAG 레이저에서 열렌즈 효과에 의한 출력특성,” 한국광학회지, 제 17권 5호, pp. 455-460, 2006 https://doi.org/10.3807/KJOP.2006.17.5.455
  15. J. Lu et al., “Neodymim doped yttrium aluminum garnet ($Y_3Al_5O_{12}$) nanocrystalline ceramics a new generation of solid state laser and optical materials,” Journal of Alloys and Compounds, vol. 341, pp. 220-225, 2002 https://doi.org/10.1016/S0925-8388(02)00083-X
  16. Kazunori Takaichi et al., “Chromium Doped $Y_3Al_5O_{12}$ Ceramics-a Novel Saturable Absorber for Passively Self-Q-Switched One-Micron Solid State Lasers,” Jpn. J. Appl. Phys., vol 41, pp. L96-L98, 2002 https://doi.org/10.1143/JJAP.41.L96
  17. Takashige Omatsu, Tomihiro Isogami, Ara Minassian, and Michael J. Damzen, “>100 kHz Q-switched operation in transcersely diode-pumped ceramic $Nd^{3+}$:YAG laser in bounce geometry,” Optics Communications, vol. 249, pp. 531-537, 2005 https://doi.org/10.1016/j.optcom.2005.01.049
  18. Yunfeng Qi et al., “High-energy LDA side-pumped electrooptical Q-switched Nd:YAG ceramic laser,” J. Opt. Soc. Am. B, vol. 24, pp. 1042-1045, 2007 https://doi.org/10.1364/JOSAB.24.001042
  19. Orazio Svelto, Principles of Lasers, (Plenum Press, New York, 1998), Chapt. 8, pp. 311-325
  20. Amnon Yariv, Optical Electronics in Modern Communications, (Oxford University Press, New York, 1997), Chapt. 6, pp. 227-235
  21. Peter W. Milonni and Joseph H. Eberly, Lasers, (John wiley & Sons, New York, 1988), Chapt. 12, pp. 365-406