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Abstract 
 

A multi-channel access problem based on hypergraph model in ultra-dense small cell 
networks is studied in this  paper. Due to the hyper-dense deployment of samll cells and the 
low-powered equipment, cumulative interference becomes an important problem besides the 
direct interference. The traditional binary interference model cannot capture the complicated 
interference relationship. In order to overcome this shortcoming, we use the hypergraph model 
to describe the cumulative interference relation among small cells. We formulate the 
multi-channel access problem based on hypergraph as two local altruistic games. The first 
game aims at minimizing the protocol MAC layer interference, which requires less 
information exchange and can converge faster. The second game aims at minimizing the 
physical layer interference. It needs more information interaction and converges slower, 
obtaining better performance. The two modeled games are both proved to be exact potential 
games, which admit at least one pure Nash Equilibrium (NE). To provide information 
exchange and reduce convergecne time, a cloud-based centralized-distributed algorithm is 
designed. Simulation results show that the proposed hypergraph models are both superior to 
the existing binary models and show the pros and cons of the two methods in different aspects. 
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1. Introduction 

The ultra-dense small cell (SCN) has been regareded as a promising technology in the next 
generation communication [1], [2], to meet with the huge increase of traffic demand. They 
significantly mitigate the interference of different communication channels, and improve the 
global throughput. In the related works of hyperdense SCN, the common interfernce model is 
the bianry graph model [3]-[6]. However, due to a large number of users, equioments, and 
cells in the hyperdense SCNs, the interferencec relationship between users are much more 
complicated, such as the cumulative and directional interference. While, the traditional bianry 
model cannot capture these complicated relationship and some new model needs to be 
investigated.  

Recently, the hypergraph interference model, which shows a good modeling ability for the 
interfernece of dense deployment scenes, has attracted more and more researchers' attention. It 
has been used in many fields, such as, device-to-device (D2D) underlay communications [7], 
the cross-cell D2D communications [8], and interference coordination [9]. In these works, 
they all employed a centralized manner. Although a distributed manner is proposed in [10], the 
implement method of communication among hyperedges is still unsolved. Therefore in this 
paper, a cloud-based centralized-distributed algortihm framework is used to realize the 
communication in a cloud-based center and make the strategy of each small cell in a 
distributed way. 

Moreover, the heterogeneous demand issue of users is also an improtant factor in resource 
allocation, and some studies paid not so much attention. They usually employed the one 
channel transmisstion model and this assumption seems to be impractical in the ultra-dense 
networks with heterogeneous demand. This motivates us to investigate the multi-channel 
access problem to meet users’ heterogeneous traffic loads. 

To the best of authors’ knowledge, most of the works, regardless of the graph based or the 
hypergraph based, generate the graph or the hypergraph interference model based on the MAC 
layer interference [3]-[10], [25]. To simplify the arithmetic and to reduce communications, 
they reduce the MAC layer interference by reducing the number of the conflicting edges or 
hyperedges to improve the physical layer throughput. In our work, the traditional optimization 
method to reduce the MAC layer interference is implemented as the first solution. Moreover, 
another optimization method that jointly considers the MAC layer and the physical layer 
interference is proposed to minimize the physical interference with the weight. 

The proposed two optimization problems are formulated in the centralized-distributed 
manner utilizing the local altruistic games [11], which is proved to be exact potential 
games,where exists at least one pure Nash equilibrium (NE). To approach the NE points,  a 
cloud-based learning algorithm is utilized for the two game models.  

To summarize, our main contributions are as follows: 
1. In order to overcome that the neighbors in a hyperedge cannot exchange information 

directly in a distributed manner, and to reduce the huge strategic space in the centralized 
manner to reduce the computation and the complexity, we utilize a cloud-based 
centralized-distributed manner. 
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2. According to different scenarios, we respectively formulate the multi-channel access 
problem as the unweighted hypergraph-based game, which needs less information 
exchange and can converge faster, to optimize the MAC layer interference, and as the 
vertex-weighted hypergraph-based game, which can achieve a better performance, to 
optimize the physical layer interference. 

3. The proposed games are both proved to be exact potential games, where exists at least one 
pure Nash Equilibrium (NE). Compared with other algorithms, the enhanced best 
response algorithm, initially reported in [12], which is noted as spatial best response 
dynamic (SBRD) algorithm, is proved to be the most suitable algorithm for the 
centralized-distributed hypergraph model with the high convergence speed and the ideal 
final value. 

Note that this paper is an extention of our previous conference paper [24]. The main 
differences are as follows: 1) Besides the unweighted hypergraph-based game in the 
conference paper [24], a vertex-weighted hypergraph-based game is proposed in this paper. 
The vertex-weighted game can obtain a better performance than the unweighted one, with 
slightly lower convergence speed. 2) A hypergraph construction algorithm is presented to 
model the hyper interference relationship of users. 3) More simulation results are discussed. 
The two proposed game models are compared from the convergence performance and network 
throughput aspects. 

The rest of this paper is organized as follows. In Section II, the system model is presented 
and the problem is formulated. In Section III, the cumulative interference model using 
hypergraph is introduced. In Section IV, the unweighted and weighted hypergraph-based 
game models are formulated, and the SBRD algorithm is proposed to achieve the NE points. 
Simulation results and analysis are presented in Section V. Finally, Section VI concludes the 
paper. 

2. System Model and Problem Formulation 

In this paper, we consider a SCN with N  small cell access points (SAPs). We denote SAP 
set as {1,2,... }N=  and the channel set as 1 2{ , ,..., }Mc c c= . Each channel has the same 
bandwidth. We assume that the heterogeneous traddic load of cells are related with their 
serving user numebrs. To meet these demands, SAP n  simultaneously accesses to 
1 3nk≤ ≤ channels. The SAP 'sn  channel selection is denoted as n , i.e., 1 2{ , ,..., }

n

n n n
n kc c c= . 

For the optimal selction number, it has been studied in  [13]-[15]. Hence, we concentrate our 
attention on the channel selection problem. 

Based on the Shannon capaticy, we have 2* log (1 ),C B g= +  where C  and B  represent 
the capacity and the bandwidth of the channel respectively. The signal to 
interference-plus-noise power ratio (SINR) is γ . Based on the channel threshold θ , we 
represent the network throughput T  as: 

  ( , ),
j n

j
n c

T T n c
∈ ∈

= ∑ ∑
 

                              (1) 

where ( , )jT n c  is the throughput of channel jc  selected by small cell n . 

Following the same interpretation in [16], we define ( , )jT n c  as: 
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where , jn cγ  is the SINR of the channel jc  selected by n , B  represents the bandwidth of each 

channel, θ  and θ ′  are the specified threshold, and maxT  denotes the maximum throughput of 
each channel.  
  However, optimizing the throughput directly is computationally complex. In our former 
work [17], we can find that, approximately, the smaller interference level leads to the larger 
network throughput.  

3. Cumulative Interference Modeling by Hypergraph 

3.1 Cloud Based Centralized-Distributed Model 
In traditional binary graph based interference models, edges represent the pairwise strong 

interference relations. Therefore, small cell access points (SAPs) can easily discover and 
directly communicate with their neighbors. However, in a hypergraph, a hyperedge with more 
than two vertexes describes cumulative interference effect caused by multiple weak interfering 
sources. Therefore, direct communication among neighbors in a hyperedge is unprocurable. 
Most of the existing works researching hyperedges [7]-[9], are formulated in a centralized 
manner. Users are always densely distributed in ultra-dense small cell networks. Centralized 
algorithms are always with a huge strategic space and a large amount of computing. However, 
the scanty work which using a distributed manner [10], did not detailedly clarify the 
implement method of communication among hyperedges.  

A centralized-distributed optimization architecture [18] for small cell networks is shown in 
Fig. 1. The decesion making process of the small cell networks is decided in the virtual cloud 
by the agent nodes. Under this mechanism, the inforamton such as location, traffic are reported 
to the cloud, and then the correonding algorthm are processing to ontain the decision. Finally, 
the cloud sends the decision results of channel selection to the small cells. 

 
Fig. 1. The centralized-distributed optimization architecture for small cell networks. 



498                                                   Xucheng Zhu et al.: Hypergraph Game Theoretic Solutions for Load Aware Dynamic Access 
of Ultra-dense Small Cell Networks 

3.2 Hypergraph Construction 
We utilize the hypergraph to accurately model the interference relationship between the 

SAPs. In a hypergraph, when the vertexes transmit at the same channel, any subset of the given 
set of vertexes constitutes a hyperedge, while one of the vertexes is interfered by the rest in it 
[15]. Therefore, a hyperedge includes at least two vertexes. Hence, we give the definition of 
the hypergraph. 

Definition 1 [19]: A hypergraph Γ  is denoted as ( , ( ) )i iV E e ∈ΛΓ = = , where Λ  is a finite 
set of indexes, 1 2{ , ,..., }NV v v v=  is a finite set of vertexes representing different small cells in 
the network. The hypergraph Γ  on V  is a family 1 2{ , ,..., }EE e e e=  of subsets of V . 

Each hypergraph is constructed based on a specified network topology. Each small cell in 
the network is seen as a vertex. The vertex m  constitutes a binary edge with vertex n  if 

0

n nn

m mn

P h
P h N

θ<
+

. In the former equation, nP  and mP  are the transmission powers of the 

vertexes n  and m , respectively, 0N  represents the power of noise, nnh  characterizes the 
channel gain from the vertex n  to its MUs, and mnh  represents the channel gain from vertex 
m  to vertex n  [12], θ  is the same threshold in eq.(2). mn mnh d α−=  where mnd  is the distance 
between m  and n  in meter and α  is the path loss in Np/meter. 

Considering the cumulative interference relationship, the hyperedges containing more than 
two vertexes may be considered. Here, we denote the largest number of vertexes as Q . It has 
been investigated that for the 3Q ≥  situations, the benefits improved is very limitted but 
complexity is much more serious [7]. The total interference over a given threshold, between 
vertex n  and vertexes 1 1,..., Qm m ′− , for a positive integer Q′  satisfying 2 Q Q′≤ ≤ , eq. (3) 
reads: 

1 1 2 2 1 1 0

.
...

Q Q

n nn

m m n m m n m m n

P h
P h P h P h N

θ
′ ′− −

<
+ + + +

                 (3) 

The corresponding hyperedge constructing procedure is shown in Algorithm 1, where a
NC  

represents the number of combinations of a  vertexes from  . 
 

Algorithm 1: hypergraph construction algorithm 

Step 1: Initialization: set the appropriate value of Q  and the threshold θ . 

 Step 2: For 2 :Q Q′ =   

        (1) Traverse all the Q
NC ′  combinations of Q′  vertexes, find the combinations satisfying 

eq. (3) and construct hyperedges on them. 
        (2) Considering the hyperedges constructed in this step, if any subset of vertexes in a 

hyperedge could construct another hyperedge with fewer vertexes, the former 
hyperedge should be abandoned. 

End 
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Remark 1: The process of withdrawing hyperedges in Algorithm 1 is reasonable. For 
vertexes satisfying eq. (1), any other vertex Qm ′  added to them can also satisfy eq. (1). The 
hypergraph will be too complicated if we keep all the hyperedges when Q′  gets larger or the 
network gets denser. The withdrawn hyperedges are redundant when we make the channel 
allocation. For a withdrawn hyperedge ne , regardless of the number of its sub-hyperedges, 
once the channels are reasonably allocated in sub-hyperedges, we ensure that not all of the 
vertexes in ne  transmit in the same channel, so there will be no interference over the 
pre-defined threshold in ne . 

 
Fig. 2. Construction procedure of the hypergraph on a random topology. 

 
Fig. 2 depicts the construction procedure of the hypergraph on a random topology. First, the 

edges with two vertexes are constructed, which are marked with red dot dash line. Then, the 
hyperedges with three vertexes are constructed which are shown with green circles. However, 
in the hypergraph, no hyperedges contains edges or hyperedges with fewer vertexes. 

 

3.3 Hypergraph-based Spectrum Access Problem 

Fig. 3 illustrates the hypergraph-based interference model composed of eleven vertexes and 
eight hyperedges. In this model, we consider the binary edges as interfering pairs (1,2), (1,3), 
(2,3) and (1,8), as well as the three-vertex hyperedges as (3,4,5), (2,6,7), (6,9,10) and (3,10,11), 
while in the traditional graph-based interference model, only binary edges are considered. The 
incidence matrix is shown beside the interference model, where each line represents a vertex 
and each column characterizes a hyperedge [20]. If vertex iv  is incident to the hyperedge je , 
then the (i,j)-entry in the matrix is one, otherwise it is zero. In Fig. 3, each vertex selects one, 
two or three channels according its traffic load. Different colors in each vertex represent the 
selected channel set of each small cell. For instance, vertex 1 and 8 select one and three 
channels, respectively. If one of the color is selected simultaneously by all the vertexes in one 
hyperedge, it means that the corresponding channel is conflicting in that hyperedge.  
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Fig. 3. Hypergraph-based interference model with the incidence matrix. 

4. Hypergraph Based Game Solution 
With the application of the centralized-distributed model, SAPs exchange information in 

the centralized manner. However, if we make the spectrum access in the centralized manner, 
the strategy space is proportional to (C )k N

M . The strategy space is too large to make the 
optimization especially when M  and N  are large. With the exchanged information, we resort 
to the game theory to solve the spectrum access problem in the distributed manner.  

Definition 2 (Nash equilibrium [21]): An channel selection profile in the small cell 
networks * * * *

1 2( , ,..., )Nk =


    is defined as a pure NE,  if and only if no player can improve its 
utility by deviating unilaterally, i.e., 

* * * *( , ) ( , ), , , .n n n n n n n n n nU U n K− −≥ ∀ ∈ ∀ ∈ ≠                   (4) 

Definition 3 (Exact potential game [21]): For a given player n , the two different actions 
selected by n  are noted as n  and n . A game is an exact potential game (EPG) if an exact 
potential function exists, i.e., 1 2: ... R NK K KΦ × × × →  and then the following equation 
holds: 

( , ) ( , ) ( , ) ( , ).n n n n n n n n n nU U− − − −− = Φ −Φ                     (5) 
In other wods, when one play changes its action, the corresponding change in the utility 

function is same with the potential function. The EPG guarantees that there exists at least one 
pure NE points [22]. 

4.1 Unweighted Hypergraph-based Game  

Inspired by the mainstream of optimization by reducing MAC layer interference, in this 
section, we propose the unweighted hypergraph-based game aiming at reducing the number of 
interfered hyperedges to optimize the network throughput. Motivated by [10], we consider the 
concept of potentially maximum protocol interference (PMPI) to model the interference level 
as follows: 
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Definition 4 (Potentially maximum protocol interference (PMPI) [10]): We define PMPI 
( )n nI   of small cell n  as the total protocol interference of all user n’ channels: 

( )

( ) ( , ),
i

j nn

i
n n n j

ce E n

I e cδ
∈∈

= ∑ ∑


                           (6) 

where 1 2( ) { , ,..., }nJ
n n nE n e e e=  denotes the set of hyperedges that contain vertex n ; ,( )i

n je cδ  is 
the indicator function as: 

1; ,
( )

0;otherwi
,

se.

i
i n j m
n j

m e c
e cδ

 ∀ ∈ ∈
= 



                        (7) 

We define the network PMPI as: 

1 2( , ,..., ) ( , ).N n n n
n

I I −
∈

= ∑


                          (8) 

All SAPs' channel selection profile is 1 2( , ,..., )Nk =


   . Commonly, a lower interfernce 
would lead to a higher throughput. Therefore, the optimization problem can be formulated as: 

(OP1) : min ( ).I k


                              (9) 
Then we construct the potential function as follows: 

( , ) ( , ).n n n n n
n

I− −
∈

Φ = −∑


                           (10) 

Formally, the channel resource allocaction game bansed on hypergraph is modeled as 
 1 [ ,{ } ,{ } ],n n n nG K U∈ ∈=                           (11) 

where   denotes the set of SAPs, nK  is the small cell 'sn  available action set, and nU  is the 
set of corresponding utility function.  

Local altruistic game proposed in [11] is a significant innovation in which one can make the 
global optimization through local optimization. In the local altruistic game, each small cell is a 
player in the game, the channel selections of each small cell are the actions of each player. The 
opposite number of the summery of both the neighbors’ and its own received interference is 
the small cell’s utility function. Each small cell optimizes its utility, and can get the maximum 
of the predefined global potential function. Based on the hypergraph model, hyperedges 
represent the interference relations among vertexes. Therefore, vertexes in hyperedges 
containing n  can be noted as the neighbors of n . 

Motivated by [11], we define the player 'sn  utility function in a locally altruistic form as: 

( , ) [ ( , ) ( , )],
n

n

an n n n n a a
a

U I k I k n−
∈

= − + ∀ ∈∑
 

 


                (12) 

where d p
n n n= ∪    represents 'sn  neighboring set, and it contains the direct interfering 

neighboring set d
n  and the potential interfering neighboring set which consists of neighbors 

in hyperedges that contain small cell n  denoted as p
n . 

The objectives of the game can be noted as: 
 max ( , ), .

n
n n nK

U n−∈
∀ ∈


                            (13) 

The following theorem indicates the properties of the proposed spectrum access game. 
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Theorem 1: The proposed game 1G  has at least one pure NE, and the optimization 
solution of OP1 constitutes a pure strategy NE of 1G . 

Proof: The following proof is inspired by the proof lines of [10]. 
We order an arbitrary player n  unilaterally changes its action from 1 2{ , ,... }

n

n n
n

n
kc c c=  to 

* * * *
1 2{ , ,... }

n

n n n
n kc c c= , the corresponding change of utility function is 

*( , ) ( , )n n n n n nU U− −−    . 
Whereafter, we can classify the channels in the two actions into following three sets : 

1. *
0 ,n nC = ∩   which means the set of channels that remain unchanged when the action 
changes. 

2. *
1 \ ( ),n n nC = ∩    which represents the channels chosen by the former action n , but 
not contained within the latter action *

n . 
3. * *

2 \ ( ),n n nC = ∩    which represents the channels chosen by the latter action *
n , but not 

contained within the former action n . 
Obviously, we can note that 0 1n C C= ∪ , *

0 2n C C= ∪ . The number of channels in two 

actions are both nk , so 021 CkCC n −== .  For presentation, we can make the one-to-one 

mapping, i.e., match each channel mc  in 1C  uniquely with one channel *
nc  in 2C  one to one.  

Afterwards, the )(nE  can be divided into three subsets: 
1. 0 ( , )mE n c , which means when the channel changes from mc  to *

mc  , hyperedges in the 

subset satisfy: *( , ) ( , )i i
n m n me c e cδ δ= . 

2. 1( , )mE n c , which represents the subset in which the hyperedges satisfy: ( , ) 1i
n me cδ =  and 

*( , ) 0i
n me cδ = . 

3. 2 ( , )mE n c , which represents the subset in which the hyperedges satisfy: ( , ) 0i
n me cδ =  

and *( , ) 1i
n me cδ = . 

We have 
 

( ) ( , ) ( )\ ( , )

( , ) ( ( , )) ( ( , ) ( , ))
a

k k l
m a m aa a a

k k l
a a a m a m a m

c ce E a e E n a e E a E n a

I k e c e c e cδ δ δ
∈ ∈∈ ∈ ∈

= = +∑ ∑ ∑ ∑ ∑
δ

 

  ,    (14) 

where ),( anE  represents the set of hyperedges that both contain n  and a . Then we can 
calculate the change of utility function: 

*

* *

( , ) ( , )

( , ) ( , ) ( , ) ( , ).
n n a a

n n

n n n n n n

n n n n a n a n
a a

U U

I k I k I k I k
− −

∈ ∈

−

= − + −∑ ∑
   

   

      
 

         (15) 

We have  

1

*
1 2( , ) ( , ) ( ( , ) ( , ) )

m

n n n n n n m m
c C

I k I k E n c E n c
∈

− = −∑
 

  ,            (16) 

since the actions of all the nNa∈  didn’t change, we have: 
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1

*
1 2( , ) ( , ) ( ( , , ) ( , , ) )

m

a a a a a a m m
c C

I k I k E n a c E n a c
∈

− = −∑
 

  ,         (17) 

where ( , , )i mE n a c  denotes the set of hyperedges that contain both n  and a  in ( , )i mE a c , 
0,1,2i = . Therefore, we get: 

1 1

*

1 2 1 2

( , ) ( , )
( ( , ) ( , ) ) ( ( , , ) ( , , ) ).

m n m

n n n n n n

m m m m
c C a c C

U U
E n c E n c E n a c E n a c
− −

∈ ∈ ∈

−

= − + −∑ ∑ ∑
   

C

   (18) 

Meanwhile, the corresponding change of the potential function can be transformed as 
following: 

 

1 1 2

* *

( , ) ( , )

( , ) ( , ) ( , ) ( , )

( ),
k j

m n m n m

n n n n n n n n

k j
n n

c C e E n c e E n c

I I

e e
− − − −

∈ ∈ ∈

Φ −Φ = −

= −∑ ∑ ∑
       

           (19) 

in which k
ne  represents the number of players that in the hyperedge k

ne . We can find 
that: 

 
1

1 1
( , )

( , ) ( , )
k

nn m

k
n m m

ae E n c

e E n c E a c
∈∈

= +∑ ∑


,           (20) 

so we get : 

1 1 2

1 1

*

( , ) ( , )

1 2 1 2

( , ) ( , )

( )

( ( , ) ( , ) ) ( ( , , ) ( , , ) ).

k j
m n m n m

m n m

n n n n

k j
n n

c C e E n c e E n c

m m m m
c C a c C

e e

E n c E n c E n a c E n a c

− −

∈ ∈ ∈

∈ ∈ ∈

Φ −Φ

= −

= − + −

∑ ∑ ∑

∑ ∑ ∑

   

C

 (21) 

We can get: 
* *( , ) ( , ) ( , ) ( , ).n n n n n n n n n nU U− − − −Φ −Φ = −                  (22) 

Therefore, the proposed dynamic channel access game 1G  is an EPG which admits at least 
one pure strategy NE. The channel selection profile minimizing the 1 2( , ,..., )NI     is the 
globally optimal solution and it is also a pure strategy NE in 1G . That completes the proof. 

 
4.2 Vertex-weighted Hypergraph-based Game  

The MAC layer interference elimination can improve the network throughput to some 
extent. However, the network throughput is directly affected by the physical layer interference. 
Therefore, the physical layer interference elimination is a more efficient method to improve 
the network throughput. In this subsection we propose a vertex-weighted hypergraph-based 
game to eliminate the physical layer interference. 

In order to realize the communication among SAPs in a hyperedge, we utilize the cloud 
model. The location information was firstly uploaded to the cloud to determine the hypergraph 
model. Therefore, each SAP can recognize its neighbors in the hyperedges and can furtherly 
calculate the distance to each neighbor. Therefore, the interference generated by each neighbor 
can be estimated by the distance information and the channel model. As mentioned above, we 
can estimate the interference from m  to n  as: 
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.mn m mn m mnP P h P d α−= =                          (23) 
With the estimation of interference, the significance of each neighbor is distinguished. The 

weight of a vertex is different when it is considered by its different neighbors. The weight of 
m  to its neighbor n  is mnλ , we can set mn mnPλ = . In the topology in Fig. 4, we illustrate the 
distances of 2's  neighbors to the vertex 2 . Afterwards, the neighbors’ weights to the vertex 2 
can be solved out. 
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Fig. 4. Illustration of the weights to vertex 2. 

 
With the definition of each neighbor’s weight, we can modify the local altruistic game in 3.2 

by describing interference with a more accurate indicator. To this end, we present the concept 
of potentially neighborly physical interference (PNPI) to model the interference caused by 
neighbors in hyperedges as follows: 

Definition 5: We define the potentially neighborly physical interference (PNPI) ( )n nJ   of 
small cell n  as the total neighborly physical interference of all channels selected by n : 

( ( ) ,,)
j nn m

n n j mn
c

J m cε λ
∈ ∈

= ∑ ∑


                       (24) 

where ( ), jm cε  is the indicator function as: 

1;
( )

0; oth
,

erwise.
j m

j

c
m ce =



∈



                        (25) 

We define the network PNPI as: 

1 2( , ,..., ) ( , ).N n n n
n

J J −
∈

= ∑


                          (26) 

Note that the PNPI has the similar form with the PMPI. However, the PNPI depicts a 
specific physical interference value. The small cell with a large PNPI means that it suffers 
serious interference from its neighbors, so the small cell is significant since it contributes a 
large amount of interference to the global interference. Therefore, the weight of each vertex 
can be measured by its corresponding PNPI. We can also optimize the network throughput by 
minimizing the PNPI. Therefore, the optimization problem is: 

(OP2) : min ( ).J k


                                (27) 
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Similar to section 3.1, the potential functionis formulated as follows: 
( , ) ( , ).n n n n n

n
J− −

∈

Φ = −∑


                           (28) 

Similarly, the game is modeled as: 
 2 [ ,{ } ,{ } ],n n n nG K U∈ ∈=                           (29) 

  Based on the hypergraph model, we can find the neighbor set of each small cell. The weight 
of each neighbor is determined by the neighbor’s estimated physical interference to the small 
cell. In the same locally altruistic form, the player 'sn  utility function is as: 

( , ) [ ( , ) ( , )],
n

n

an n n n n a a
a

U J k J k n−
∈

= − + ∀ ∈∑
 

 


                (30) 

Theorem 2: The proposed dynamic channel access game 2G  is an EPG, which has at least 
one pure strategy NE, and the optimization solution of OP2 constitutes a pure strategy NE of 

2G . 
Proof: The proof is similar to that in section 3.1, so we omit it for brevity. Note that the 

classification of hyperedges according to ( )δ •  in section 3.1 should be changed to the 
classification of neighbors according to ( )ε • . 
4.3 Comparation and Discussion 

In order to distinguish the two game solutions, we list the different advantages of them. The 
unweighted hypergraph-based game needs less information interaction and can converge with 
fewer iterations. The faster convergence will be validated by the simulation in the next section. 
Therefore, the unweighted hypergraph-based game is more suitable for networks which has a 
strict requirement of the convergence speed. On the other hand, the vertex-weighted hypergraph 
game solution can further improve the network throughput compared with the unweighted 
hypergraph game solution. Therefore, the vertex-weighted hypergraph-based game solution is 
more suitable for the network with a high network throughput requirement.  

4.4 Spatial Best Response Dynamic Learning Algorithm 

In this section, we modified a learning algorithm to approach the Ne points [11]. 
Following the SBRD learning algorithm [12], the learning algorithm permits multiple nodes 

to update their actions at each iteration. Note that any two of the selected nodes  don’t exist in 
the same hyperedge. In other words, the chosen nodes are non-adjacent vertexes in the 
hypergraph. 
Algorithm 2: SBRD learning algorithm 

Step 1: Initialization: each vertex n∈  randomly choose an action (0) .n nK∈  

Step 2: Loop for max1,2,...,ki = , all the vertexes exchange information with their neighbors in 
the cloud, and select vertexes of no relations to update the action. 

Step 3: Each selected vertex n  calculates the utility corresponding to each available action, 
and chooses the one of the largest utility, 

( )
( ) arg max ( ( ), ( )).

n
n n

n n ni K
i U i i

∈
=


      

       If there exist more than one actions of largest utility, randomly choose one of them. 
Step 4: Go to step 2. 
End 
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Theorem 3: The SBRD learning algorithm converges to the local or the global maxima of 

the proposed potential function. 
Proof: According to [12], the SBRD algorithm is enhanced from the best response algorithm. 

As it is proved in [21], in the best response algorithm, the selected node in each iteration only 
chooses the strategy which yields the largest utility function. Therefore, in each iteration, the 
utility function of the selected node increases to or remains in the largest value. It means that 
the potential function either increases or remains in each iteration. Besides, the potential 
function has an upper bound, so that the algorithm, after finite iterations, converges to one of 
the NEs. Different from [21], in the SBRD algorithm, non-adjacent nodes are chosen to update 
the strategies simultaneously. The strategies that are taken by chosen nodes have no influence 
on each other. Therefore, the enhanced best response algorithm just speeds up the convergence 
and has the same convergence performance as the best response algorithm. This ends the 
proof. 

5. Simulation Results 
In this section, we compare the simulation results with the previous works to demonstrate 

the superiority of the proposed method. The simulation scenario follows the setting given in 
[23]. The bandwidth of each channel is 6MHzB = , and each small cell randomly chooses one, 
two or three channels based on its load. The noise power is 0 100dBmN = − , the transmission 
power of each small cell is 23dBmP = , and the path loss factor is 4α = . The distance 
between small cell n  and its associated boundary user is 20mnnd = . To construct the 
hyperedges, we assume 3Q =  and set the two thresholds as 3dBθ =  and 6dBθ ′ = . 

5.1 Convergence Performance 

In this section the small cells are randomly located in a 500m 500m×  square area. It is 
assumed that there are 15 channels available for SAPs. The simulation results are revealed to 
illustrate the converge speed and the converge performance. We compare the average iteration 
times before convergences and average convergence values respectively of the BR (Best 
Response) [21], the SBRD and the E-SAP [10] algorithms versus the number of small cells.  

Average iteration times before convergences versus the number of small cells are illustrated 
in Fig. 5. As the number of SAPs grows, the number of iterations required by the three 
algorithms increases accordingly. Both in case of the PMPI and the PNPI, the SBRD algorithm 
can converge with the least number of iterations, followed by the BR algorithm. The E-SAP 
algorithm needs the largest number of iterations, which is much higher than the other two 
algorithms. Meanwhile, in the same network topology and using the same learning algorithm, 
the vertex-weighted hypergraph-based game (PNPI) needs more iteration times than the 
unweighted hypergraph-based game (PMPI). Moreover, when the network gets denser, the 
difference in iteration number gets more obvious. In other words, the unweighted 
hypergraph-based game outperforms the vertex-weighted hypergraph-based game in the 
convergence speed especially when the network gets denser.  
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 Fig. 5-a. Iteration times of the unweighted          Fig. 5-b. Iteration times of the vertex- 
hypergraph game solution.                 weighted hypergraph game solution. 

 
Average convergence values versus the number of small cells are illustrated in Fig. 6. As 

the number of SAPs grows, the defined global PMPI and PNPI increase because of the more 
serious interference. The E-SAP algorithm can always get the strategy with the interference 
less than or equal to the other two algorithms. While the average convergence values of the BR 
and the SBRD algorithms are almost equal. However, the difference in interference is not 
obvious. Moreover, when the interferences are brought into throughput, the difference of 
throughputs are much less obvious. Considering the convergence speed illustrated in Fig. 5, 
the SBRD algorithm can converge much faster than other algorithms. Therefore, the shortage 
of the SBRD algorithm in interference is negligible for a much higher converging speed. 
Though the E-SAP algorithm can converge to a strategy with the least interference, however, 
the small advantage in performance is obtained by the price of the converging speed. 
 

 
Fig. 6-a. Convergence values of the unweighted   Fig. 6-b. Convergence values of the vertex- 

hypergraph game solution.              weighted hypergraph game solution. 
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5.2 Network Throughput Comparison 

In this section we compare the network throughput respectively of the graph based MAC 
layer interference elimination game [11], the unweighted hypergraph-based game and the 
vertex-weighted hypergraph-based game. 

By simulation, we get the network throughput versus the number of available channels of 
the three game solutions in different topologies with 30N =  in a 250m 250m×  square area. 
Then we average them in Fig. 7. 

 

 
Fig. 7. Network throughput comparison versus the number of available channels. 

 
We can conclude from the figure that the both hypergraph-based game solutions have the 

higher network throughput than the graph-based game solution. The reason is that the 
hypergraph-based solutions eliminate the cumulative interference which is ignored in the 
graph-based solution. When the available channels are insufficient, i.e., 10M ≤ , the SAPs are 
seriously interfered, so whatever optimization cannot further enhance the network throughput. 
Therefore, the two hypergraph-based game solutions have the similar throughputs. When 
10 26M< < , the vertex-weighted hypergraph- based game solution minimizes the physical 
layer interference, which, can better reflect the interference of the network than the MAC layer 
interference. Therefore, the vertex-weighted hypergraph-based game solution has the higher 
network throughput than the unweighted hypergraph-based game solution. When the available 
channels are abundant, i.e., 26M ≥ , the both hypergraph-based solutions can get the 
interference-free channel allocation strategies. Therefore, they have the similar throughputs.  

It is assumed that there are 15 channels available for small cells. In Fig. 8, we compare the 
network throughput of the three game solutions versus the number of small cells in a 
250m 250m×  square area.  
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Fig. 8. Network throughput comparison versus the number of small cells. 

 
We can conclude from the figure that the two hypergraph-based game solutions have the 

higher network throughput than the graph-based game solution for they eliminate the 
cumulative interference which is ignored in the graph-based solution. When 15N ≤ , the 
network is relatively sparse, both the direct and the cumulative interference are weak, the 
available channels are abundant for an interference-free arrangement. Therefore, the two 
hypergraph-based game solutions have the same network throughput. When 15N > , the 
cumulative interference becomes stronger, the vertex-weighted hypergraph-based game 
solution minimizes the physical layer interference, which, can better reflect the interference of 
the network than the MAC layer interference. Therefore, the vertex-weighted 
hypergraph-based game solution has the higher network throughput than the unweighted 
hypergraph-based game solution. Moreover, as the network gets denser, the interference gets 
stronger, the advantage of the vertex-weighted hypergraph- based game solution gets more 
obvious. In the simulation scenario, each small cell selects a fixed number of channels 
according to its own load requirements. While the total number of available channels in the 
scene is fixed. Therefore, if more small cells are added into the network when the number of 
small cells in the area is saturated, no matter how the channel selection strategy is optimized, 
the network will be seriously interfered and receive more interference than the throughput gain. 
Therefore, the network throughput may decrease when the number of small cells is over 35. 

Note that even though the vertex-weighted hypergraph-based game solution has the higher 
network throughput than the unweighted hypergraph-based game solution, its convergence 
speed is much lower.  

6. Conclusion 
We investigated the multi-channel access problem for hyper-dense small cell networks. 

With the application of the centralized-distributed model, we formulated the dynamic channel 
access problem as local altruistic games respectively based on the traditional unweighted 
hypergraph and the vertex-weighted hypergraph models. The two games were respectively 
aimed at minimizing the MAC layer interference and the physical layer interference. Then we 
proved that the games are both exact potential games, which admit at least one pure strategy 
NE. The SBRD learning algorithm is used to approach the NE points. Simulation results 
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proved the advantage of the SBRD algorithm in the ultra-dense small cell networks. Also,  the 
proposed hypergraph models improve the network throughput, better than the binary 
graph-based game model. Moreover, the different advantages of the two game solutions are 
validated. 

It is noted that our work is focused on the static network and needs the information 
interaction. In the future work, we will study the spectrum access with no information 
interaction in the dynamic network. 
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