• 제목/요약/키워드: time-dependent state

검색결과 514건 처리시간 0.032초

제어입력 크기제한을 갖는 시스템에서 이득 스케쥴 상태되먹임-외란앞먹임 제어 (Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input)

  • 강민식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.915-920
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_{2}-gain$ from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

  • PDF

제어입력 크기제한을 갖는 시스템에서 이득 스케줄 상태되먹임-외란앞먹임 제어 - 이론 (Gain Scheduled State Feedback and Disturbance Feedforward Control for Systems with Bounded Control Input - Theory)

  • 강민식
    • 한국정밀공학회지
    • /
    • 제24권11호
    • /
    • pp.59-65
    • /
    • 2007
  • A new optimal state feedback and disturbance feedforward control design in the sense of minimizing $L_2$-gain from disturbance to control output is proposed for disturbance attenuation of systems with bounded control input and measurable disturbance. The controller is derived in the framework of linear matrix inequality(LMI) optimization. A gain scheduled state feedback and disturbance feedforward control design is also suggested to improve disturbance attenuation performance. The control gains are scheduled according to the proximity to the origin of the state of the plant and the magnitude of disturbance. This procedure yields a stable linear time varying control structure that allows higher gain and hence higher performance controller as the state and the disturbance move closer to the origin. The main results give sufficient conditions for the satisfaction of a parameter-dependent performance measure, without violating the bounded control input condition.

Robust D-Stability and D-Stabilization of Dynamic Interval Systems

  • Mao, Wei-Jie;Chu, Jian
    • International Journal of Control, Automation, and Systems
    • /
    • 제5권5호
    • /
    • pp.594-600
    • /
    • 2007
  • A sufficient condition for the robust D-stability of dynamic interval systems is proposed in this paper. This D-stability condition is based on a parameter-dependent Lyapunov function obtained from the feasibility of a set of matrix inequalities defined at a series of partial-vertex-based interval matrices other than the total vertex matrices as previous results. This condition is also extended to the robust D-stabilization problem of dynamic interval systems, which supplies an effective synthesis procedure for any LMI D-region. The proposed conditions can be simplified to a set of LMIs, which can be solved by efficient interior point methods in polynomial time.

Delay-Dependent Guaranteed Cost Control for Uncertain Neutral Systems with Distributed Delays

  • Li, Yongmin;Xu, Shengyuan;Zhang, Baoyong;Chu, Yuming
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권1호
    • /
    • pp.15-23
    • /
    • 2008
  • This paper considers the problem of delay-dependent guaranteed cost controller design for uncertain neutral systems with distributed delays. The system under consideration is subject to norm-bounded time-varying parametric uncertainty appearing in all the matrices of the state-space model. By constructing appropriate Lyapunov functionals and using matrix inequality techniques, a state feedback controller is designed such that the resulting closed-loop system is not only robustly stable but also guarantees an adequate level of performance for all admissible uncertainties. Furthermore, a convex optimization problem is introduced to minimize a specified cost bound. By matrix transformation techniques, the corresponding optimal guaranteed controller can be obtained by solving a linear matrix inequality. Finally, a simulation example is presented to demonstrate the effectiveness of the proposed approach.

Seismic response control of buildings with force saturation constraints

  • Ubertini, Filippo;Materazzi, A. Luigi
    • Smart Structures and Systems
    • /
    • 제12권2호
    • /
    • pp.157-179
    • /
    • 2013
  • We present an approach, based on the state dependent Riccati equation, for designing non-collocated seismic response control strategies for buildings accounting for physical constraints, with particular attention to force saturation. We consider both cases of active control using general actuators and semi-active control using magnetorheological dampers. The formulation includes multi control devices, acceleration feedback and time delay compensation. In the active case, the proposed approach is a generalization of the classic linear quadratic regulator, while, in the semi-active case, it represents a novel generalization of the well-established modified clipped optimal approach. As discussed in the paper, the main advantage of the proposed approach with respect to existing strategies is that it allows to naturally handle a broad class of non-linearities as well as different types of control constraints, not limited to force saturation but also including, for instance, displacement limitations. Numerical results on a typical building benchmark problem demonstrate that these additional features are achieved with essentially the same control effectiveness of existing saturation control strategies.

A SPACE-TIME DISCONTINUOUS GALERKIN METHOD FOR FIRST ORDER HYPERBOLIC SYSTEMS

  • Zhang, Tie;Liu, Jingna
    • 대한수학회지
    • /
    • 제51권4호
    • /
    • pp.665-678
    • /
    • 2014
  • We present a new space-time discontinuous Galerkin (DG) method for solving the time dependent, positive symmetric hyperbolic systems. The main feature of this DG method is that the discrete equations can be solved semi-explicitly, layer by layer, in time direction. For the partition made of triangle or rectangular meshes, we give the stability analysis of this DG method and derive the optimal error estimates in the DG-norm which is stronger than the $L_2$-norm. As application, the wave equation is considered and some numerical experiments are provided to illustrate the validity of this DG method.

EDISON Co-rotational Plane beam-Dynamic tip load를 이용한 가진주파수 변화에 따른 외팔보의 자유단 진동 연구

  • 박철우;주현식
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.246-250
    • /
    • 2015
  • In this paper, Timoshenko and Euler-Bernoulli beam theories(EB-beam) are used, and Fast Fourier Transformation(FFT) analysis is then employed to extract their natural frequencies using both analytical approach and Co-rotational plane beam(CR-beam) EDISON program. EB-beam is used to analyze a spring-mass system with a single degree of freedom. Sinusoidal force with various frequencies and constant magnitude are applied to tip of each beam. After the oscillatory tip response is observed in EB-beam, it decreases and finally converges to the so-called 'steady-state.' The decreasing rate of the tip deflection with respect to time is reduced when the forcing frequency is increased. Although the tip deflection is found to be independent of the excitation frequency, it turns out that time to reach the steady state response is dependent on the forcing frequency.

  • PDF

High-Performance 음성 인식을 위한 Efficient Mixture Gaussian 합성에 관한 연구 (A Study on Gaussian Mixture Synthesis for High-Performance Speech Recognition)

  • 이상복;이철희;김종교
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 하계종합학술대회 논문집(4)
    • /
    • pp.195-198
    • /
    • 2002
  • We propose an efficient mixture Gaussian synthesis method for decision tree based state tying that produces better context-dependent models in a short period of training time. This method makes it possible to handle mixture Gaussian HMMs in decision tree based state tying algorithm, and provides higher recognition performance compared to the conventional HMM training procedure using decision tree based state tying on single Gaussian GMMs. This method also reduces the steps of HMM training procedure. We applied this method to training of PBS, and we expect to achieve a little point improvement in phoneme accuarcy and reduction in training time.

  • PDF

THE PERFORMANCE OF A MEMORY RESTRICTED COMPUTER WITH A STATE-DEPENDENT JOB ADMISSION POLICY

  • Lim, Jong-Seul
    • Journal of applied mathematics & informatics
    • /
    • 제2권2호
    • /
    • pp.21-46
    • /
    • 1995
  • Congestion and memory occupancy in computer system may be reduced further if new jobs are admitted only when the num-ber of jobs queued at CPU is below CPU run queue cutoff (RQ). In this paper we prove that response time of a job is invariant with respect to RQ if jobs do not communicate each other. We also demonstrate this invariance property numerically using marix-geometric methods and present an approximate method for the delay due to context switch-ing under time slicing. The approximation suggests that time slicing with constant overhead yields a throughput similar to an FCFS system without overhead.

포화 구동기를 갖는 시간 지연 시스템의 제어기 설계 (Robust stabilization of uncertain time-delay systems with saturating actuator)

  • 조현주;박주현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 학술대회 논문집 정보 및 제어부문
    • /
    • pp.702-704
    • /
    • 2004
  • This paper focuses on the problem of asymptotic stabilization for uncertain time-delay systems with saturating actuator. We propose a state feedback controller which maximizes the delay bound for guaranteeing stability of the system. Then, based on the Lyapunov method, a delay-dependent stabilization criterion is devised by taking the relationship between the terms in the Leibniz-Newton formula into account. The criterion is represented in terms of LMIs, which can be solved by various efficient convex optimization algorithm. Numerical examples are given to illustrate our main method.

  • PDF