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Robust O-Stability and @-Stabilization of Dynamic Interval Systems

Wei-Jie Mao and Jian Chu

Abstract: A sufficient condition for the robust ®-stability of dynamic interval systems is
proposed in this paper. This @-stability condition is based on a parameter-dependent Lyapunov
function obtained from the feasibility of a set of matrix inequalities defined at a series of partial-
vertex-based interval matrices other than the total vertex matrices as previous results. This
condition is also extended to the robust ®@-stabilization problem of dynamic interval systems,
which supplies an effective synthesis procedure for any LMI ®-region. The proposed conditions
can be simplified to a set of LMIs, which can be solved by efficient interior point methods in

polynomial time.

Keywords: Interval systems, parameter-dependent Lyapunov function, robust D-stability, robust

{D-stabilization.

1. INTRODUCTION

Robust stability problem of interval matrices has
attracted considerable attention over last decades. Lots
of results are readily available, e.g., [1-7]. Most of
existing results constitute sufficient conditions for
robust stability of interval matrices. Among those
necessary and sufficient conditions, two main streams
may be quoted. The first one is based on the finite
subdivisions of interval matrices (see e.g., [3,4]). The
computation amount depends on the conservatism of
applied sufficient conditions over each of subinterval
matrices. The second one is in terms of the total
vertices or exposed faces (see e.g., [5-7]). This
number of vertices or faces, except for the systems of
low dimension, is obviously enormous and it results in
heavy computation. More recently, based on
parameter-dependent Lyapunov approach, robust ©-
stability analysis for uncertain polytopic systems
appeared in [8,9]. The results encompass the usual
stability of continuous-time and discrete-time
uncertain systems as particular cases. As an extension,
a linearizing change of variables was proposed in [3]
to get sufficient conditions of @-stabilization of a
polytope of matrices. However, this change of
variables is no more valid for some D-regions such as
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half-planes. In [10], a sufficient condition of robust ©-
stabilization of a polytope of matrices was
characterized by an LMI involving matrix variables
subject to an additional non-linear algebraic constraint.
As the conic complementarity formulation and related
numerical procedure used, this approach still suffers
from its computational complexity.

In this paper, a new sufficient condition for the
quadratic @-stability of dynamic interval systems is
firstly derived. To further reduce the conservatism of
quadratic @-stability, a parameter-dependent Lyapunov
function is introduced into the analysis of dynamic
interval systems. A partial-vertex-based condition
other than a total-vertex-based condition is proposed
for the robust @-stability of dynamic interval systems.
Compared with the total-vertex-based approach, the
computation amount of the proposed partial-vertex-
based method can be reduced in the most cases. The
results are also extended to the ®-stabilization of
dynamic interval systems, which supplies an effective
synthesis procedure for any LMI D-region. Moreover,
these conditions can be simplified to a set of LMIs
and the LMI feasibility problem can be solved by
efficient interior point methods in polynomial time.
Thus, the proposed approach in this paper leads to a
less computational complexity than that in [10].

2. PRELIMINARIES

The following notations will be used throughout the
paper. R” denotes the n dimensional Euclidean
space and R™” isthe setofall nxm real matrices.
The notation X =Y (respectively, X >Y ), where X

and Y are symmetric matrices, means that the matrix
X —Y is positive semi-definite (respectively, positive
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definite). ® is the Kronecker product of two matrices.

The symbol * will be used to induce a symmetric
x z7

zZ Y

X *
structure. For example, =
ZY

}. For all

1<i,j<n, with A" =[al ] A =[ay 1, satisty-

m<aM

i Sag ., We define an interval matrix as

ing a

M ..
/’lz{[a,-j]nxnzai';'gaij <ay ,ISl,]Sn}. )

Consider the following dynamic interval system
S[x()] = Ax(), 2

where x(f)eR” is the state, J[] denotes the time

derivative for continuous-time systems and shift
operator for discrete-time systems, and A€ 4. Let

1

A= (A" +AM), 3)
AA:%(AM —A™). 4

Then A4 can be written as

n

_ T
A—A0+Ze,- i€

i,j=1

1] = Aay, (5)

where e, eR” denotes the column vector with &

th element to be 1 and others to be 0.
Consider the region of the complex plain defined
by

@z{zeC:RH +R122+R1T22* +R22zz* <0}, 6)

where R, =RL eR™Y and R,,=Rl, e R are

submatrices of R e R*¥??  guch that

{Ru Rlz:l
R= ) (7)

T
Riy | Ry

and d is called the order of the ®-region. It is assumed
that R, >0 and, therefore, © defined in (6)

represents convex regions symmetric with respect to
the real axis.

Remark 1: Typical ®-regions used in the usual
stability analysis are the left-hand side of complex
plane (continuous-time systems) and the unitary disk
centered at the origin (discrete-time systems)
represented, respectively, by the choices of R

01 “110
RC:L 0}’ RD:[O 1}' ®)

Definition 1 [8]: A matrix 4eR™” is said to be
D-stable if all its eigenvalues lie in the ®-region
specified by (6).

Lemma 1 [8]: A matrix 4eR"™" is O-stable if
and only if there exists a symmetric positive definite

matrix P eR™” such that
Rll ®P+R12 ®(PA)
+RL ® (AT P)+ Ry, ® (47 PA) < 0.

3. ROBUST O-STABILITY CONDITIONS

Definition 2 [8]: 4 is said to be quadratically D-
stable if there exists a symmetric positive definite
matrix PeR"™" such that

R} ® P+ Ry, ®(PA)

10)
+ R, @ (AT P)+ Ry, ® (4T PAY <0

forall A€ A

Definition 3 [8]: 4 is said to be robustly ©O-stable
if, forall Ae A4, Ais O-stable.

Theorem 1: A4 is quadratically D-stable if there

exist a symmetric positive definite matrix P eR™",

a matrix GeR™"

1,2,---,n) such that

and real scalars ¢, 4; >0 (i, =

o * *
FRL®P-6)) (-1;9G+G")) |
[+5ld ® (4,6)" ] [+s‘2R22 ®P J <0
UT(RL ®G) UT(1,®G) -V
(11)

where

O =R, ®P+Ry ®(AG) +R)H ®(40)

£ 3 Aynal (1g ® (ee])), (12
i,j=1
U=[I,;®¢ I;®e, a3
I;®e¢ I;®e,],
v =diag{l; ® 4, I, ®4, 14)
I; ® A, 1;® 4,1}
Proof: Define
_LRH ®P+Ri, ®(AG)T] ) |
+R), ® (4G)

e RL®(P-G) —1,®(G+G")
+el; ® (AG)T +6 Ry ® P
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with a symmetric positive definite matrix PeR™",

a matrix GeR™”" and a positive real scalar e&.
Then, for any real scalars 4; >0 (i, j =1, 2,--,n),

(R, ® P+ RE ®(4,6) ) 1
Y = +R12®(A()G)T
¢ R 8(P-6) -1, ®(G+G")
| Lrels 8 (4007 +6 Ry ®P
n || Ry ®GT .

1@ fre 1, 0
2ot e
+{Ig”}(1d ®(eifijejr))[R1g ®G €l;® G]}

i R ® P+ RE ®(4,G) * _
+Rip ® (4yG)
KL ®(P-0) ~1;©(G+G")
L +ely; ® (A()G)T +€_2R22 2 P
< R12®GT .
. L, ®(ee;
+i§;‘l{ﬂ7j le(@GT}( 4 ®(e;e; ))

[Rh®G el ®G)|

+ Ayha {Ig" }(Id ® (e¢)))| Lan o]} <0.

The right part of the above inequality is derived from
the Schur complement of (11). Furthermore, noting
that

T
Idn y Idn
el; @ 4" el ® AT

=R ®P+R,®(PA")
+ R, ® (AP)+ Ry, ® (4PAT) <0,
which is exactly the inequality (10) with 4 replaced
by A”, it follows immediately from Definition 2

that A4 is quadratically O-stable. 0
Remark 2: The condition (11) is actually an LMI

when the real scalar £ in Theorem 1 is a priori given.

The variable & in (11) supplies an additional degree
of freedom for the feasibility of (11). & can be
initially set as 1. If LMI (11) is infeasible, a possible
solution may be searched by tuning & or by iterating
over &.

Some notations are necessary to state the main
result concerning the robust @-stability of an interval
matrix 4. Let J={(@j):i,j=1,2,---,n}. Then, for

JycJ, a series of partial-vertex-based interval
matrices are defined as
Ax) = {[a(k),-j]nxn rag <ag ) < af}/[ for (i, ) & J1;
ag )ij = a; or gy = aijM for (i, j) e Jl},
k=12,-,2", (15)
where N is the number of elements in Ji. Ay,

A4y canbe defined similarly as (3) and (4).

Theorem 2: Given J, c J, A is robustly D-stable
if there exist symmetric positive definite matrices

Py €R™", amatrix GeR™" and real scalars ¢,

Akyj >0 (i,j=1,2,+-,n) such that

i D) * * ‘l
e RL® Py ~G)| (-1, ®G+GN)|

+ely ® (4G’ [+5—2Rzz ® Ry } <0

| UTR,®06)

EUT(Id ®G) _I/(k)_

k=1,2,--,2", (16)

where U is defined as (13) and @),V are defined

as

Dty = Ria ® (AyoG) + Riz ® (Ao G)

n
2 T
FRY ® By + 2 Ayl (1a ®(eel)
ij=1

(17)
Vi = diag{ld ® Ay

1; ® Agym

14 ® Apyin

(13)
Id ®Z(k)nn}'

Proof: By Theorem 1, A,y is quadratically ©-

stable from (16). It means that every vertex matrix
4; of Ay, which is also the vertex matrix of 1,

satisfying

_ . .
R ® P + R, ®(4,G)

+Ry, ® (4,G)T

e 'RL ® (P - G) —I;®(G+G")
+el; ® (4,G) +6 2Ry, ®P,

i=1,2,--,2"",

where P; corresponds to one of Fy,, k= 1,2,-,2N.

Multiply the above i=1,2,---,2™" inequalities by
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2nxn
T, T; 20, Zi:l 7; =1, and sum to get

E(r) *

y=|\{e'RL®(P(r)-G)) (-1,®G+GT))|<0,
+ely ®(ADG) +&2Ry, ® P(7)

where

()= Ry, ® P(z) + R ® (A(DG)+ R, ®(A(D)G)'
2nxn ann

P(t)= Y. 5B, A(D)= ), ;4
i=l

i=1

Following the same procedure as in the proof of
Theorem 1, we get

R ®P(r)+ R, ® (P(T)AT (r))
+ R, ®(A(D)P(r))+ Ry, ® (A(T)P(T)AT (r)) <0.

Then, it follows immediately from Lemma 1 and
Definition 3 that 4 is robustly @-stable. O
Remark 3: There are 2" inequalities in Theorem
2. In the worst case of J; =J, this number increases
to 2" and Theorems 2 recover the total-vertex-
based conditions. However, in the most cases, N is
less than n°. Thus, compared with those total-vertex-
based conditions, the computation amount of

proposed partial-vertex-based conditions can be
reduced in the most cases.

4. ROBUST O-STABILIZATION
CONDITIONS

Let us consider the following dynamic interval
system

S[x()]= Ax(t) + Bu(?), (19)

where x(¢)eR” u(t)eR? is the

control input; A€ 4 and Be® with 4 defined as
(1) and @ defined similarly as

is the state;

@:{[b,»j]nxp B < by Sby,uismgsly},(m)

where B™ =[], and B =[b}"),,., satisfy b]

<by forall 1<i<nml1<j<p. Let

By =5 (8" + B, @
AB = %(BM —-B™). (22)

Then B can be written as

n p
T
i=1 j=1
where ¢, €eR"” or h e€R” denotes the column

vector with £ th element to be 1 and others to be 0.
Definition 4: The dynamic interval system (19) is
said to be quadratically O-stabilizable if there exist a

symmetric positive definite matrix PeR™” and a
matrix K € R”” such that

R} ® P+ Ry, ®[P(4+ BK)]
+Rl ®[(4+BK) P 24
+ Ry, ®[ (4 + BKY P(4+BK)|<0
for all 4e4 and Be® K is called as a
quadratically @-stabilizing matrix.

Definition 5: The dynamic interval system (19) is
said to be robustly D-stabilizable if, for all Ae 4

and Be®, there exists a matrix K eR”" such

that 4+ BK is @-stable. K is called as a robustly ©-
stabilizing matrix.

Theorem 3: The dynamic interval system (19) is
quadratically O-stabilizable if there exist a symmetric

positive definite matrix P e R"™”, matrices G € R
and ZeRP", and real scalars &, 4; >0 (i,j=

1,2,---,n), 5,-]- >0(i=1,2,--,mj=12,---,p) such that

B N7 * * % )

[gld ® (4G + BOZ)TJ [—Id ®(G+GT )] .

+¢ R, ®(P-G) +6 Ry ®P
Ul (RL ®G) Ul (1, ®G) -1 *
Ul (R, ®7) sUs (1,®Z) 0 W,
<0, (25)
where

Y =Ry, ® (4G +ByZ)| + Rl ® (4G + ByZ)

TR ®P+ Z g (1 ® eel))  (26)

i,j=1
n p
2 T
+ 223 5,808 (1, ®(ee)
i=l j=1
U1=[]d ®el Id ®en (27)
Id ®e1 Id ®en],
U2 =[Id ®€] Id ®6n (28)
]d ®€1 Id ®€n],
Y =diag{l; ® 4, 13 ® 4y, 29)
1,®4, 1, ®ﬂnn},
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V2:diag{ld ®511 ]d ®51p

(30)
1, ®6,

[;®8,,].
Furthermore, the quadratically ©-stabilizing state
feedback matrix is K = ZG™ .

Proof: The proof is similar to that of Theorem 1,
based on Definition 4, by replacing 4 with A4+ BK
and setting Z = KG. O

Let C"=[4",B"],CM =[4™,BM], and J={(,
N:ii=12,---,n, j=12,---,n+ p}.Then, for J, cJ,

a series of partial-vertex-based interval matrices are
defined as

Ce) =10 )> B )]

(et )i ) *
= cg’Sc(k)ij ch/[ for (i, j) e Ji; ,(31)
Co )i =S5 OF Cpiyij =cijM for (i, j) € J
k=1,2,,2",
where N is the number of elements in Jj.

Cio = LAwy0- Buyol and AC(y =[Adqy, AByyy ] can
be defined similarly as (3)-(4) and (21)-(22).
Theorem 4: Given J; < J, the dynamic interval
system (19) is robustly ®-stabilizable if there exist
symmetric positive definite matrices F, € R,

matrices GeR™" and ZeRP*", and real scalars
&, ﬂ(k)y >0 (i>j:192""9n)> 6(]()1] >0 (i=1a29“'an;
j=12,---,p) such that

\I,l(k) * * %
e 'RL ®(Byy —-G)
12 =4 I, ®(G+G")
‘H';'Id ®(A(k)0G 2 *
T +& R22 ®P(k)
+B1y0Z)
Ul (R}, ®G) Ul (I;®G)  Vuy
| U (R,®2) Uy (15®2) 0 Fyyp|
<0,
k=12,--,2", (32)

where U,,U, are defined as (27)-(28), and ‘{’(k),
Viens Viey2 are defined as

T
¥y = Rit ® By + Rip @ (ApyoG + ByoZ) (33)

T
+Riy ® (AyoG + BiyoZ)

n
+ ﬂ(k)iJ'AC’(zk)zj (Id ®(ee] ))
i,j=1

O 2 T
DR NI LICERIE
i=1 j=1

Vi = diag {Id ® Ay I3 ® Aiyin 34)
13 ® Aiym 1;® ﬂ(k)nn}’

Viey = diag{ld ® Sy I; @64y, 35)
I; ® 8y Iy ® Sy}

Furthermore, the robustly @-stabilizing state feed-

back matrixis K = ZG.

Proof: The proof is similar to that of Theorem 2,
based on Definition 5, by replacing 4 with A+ BK
and setting Z = KG. O

Remark 4: The proposed conditions for @-
stabilization are applicable to the usual stabilization of
both continuous-time and discrete-time systems. Thus,
they are better than the result in [8], which is only
applicable to the case of discrete-time systems.

5. NUMERICAL EXAMPLES

Example 1: Consider the @-stabilization problem
of the interval continuous-time system defined by

-7 46 45 -53 2
e 43 -6.1 -3.5 02 B - 0
57 26 -76 -02] 20
28 0.5 43 -46 0
-3 71 63 2.7 3
M -1.7 28 -15 2 BM _
—4 49 -31 327 -1
06 25 62 -28 0

This system is obviously unstable. By Theorem 3
(R=R;), LMI (25) is feasible with £=0.1 and
this system is determined to be quadratically ®-
stabilizable. Furthermore, let us add a constraint

1.78 | 1
Re(z) < -0.89 on the D-region, i.e., R= T Tol

then the above system cannot be determined to be
quadratically ®-stabilizable by Theorem 3. But, by
Theorem 4, LMI (32) is feasible with £=0.1 and
this system can be determined to be robustly ©-
stabilizable. The partial-vertex-based interval matrices
Ce) (k=1,2) are defined as
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(—7 46 45 -53 2]
-43 -6.1 -35 02 0
57 26 76 -02 -2
28 05 43 -46 0
-3 71 63 27
v |-17 28 -15 2

Ci) =

C - )
O ] 49 76 32 -1
|06 25 62 -28 0]
[—7 46 45 =53 1
. |43 61 35 02 0
Cz): 3
( -57 26 -31 -02 -2
|28 05 43 -46 0|
(-3 71 63 -2.7 1
oM _ -17 28 -15 2
@71 4 49 31 32 -1
|06 25 62 28 0

One of the robustly @-stabilizing gains is obtained by

K=[—-29.7979 17.3083 36.4956 141.3820].
Example 2: Consider the ®-stabilization problem

of the continuous-time polytope of matrices given by

S N P
ol

The polytope of matrices defined by the two vertices
A1, A, is not stable. The region of pole placement is
the intersection of a disk centered at o =—-0.4 with
radius r = 1, a conic sector defined by its inner angle
20(6=r/3) and its apex @, =-0.25, and a left
half-plane defined for a3 =-0.75.

This example is from [10] where a robustly ©-
stabilizing gain is given by K= —0.0809 —0.3849]
using the conic complementarity algorithm. Applying
Theorem 4, simplified as a total-vertex-based
condition without uncertainties, we are able to find
that this @-stabilization problem is feasible. In detail,
the @-region in this example is characterized by

®=®1n®2 ﬂ®3,
D :{zeC:af—rZ—alz—alz*+zz* <O},

(zeC: A

sind (2a .
. 2 cosH(z—z )
@2 = +z+z ) <0

. siné (—2a,
cosH(z —z) (+z+z*) J

-

Ds ={zeC:—2a3 +z+z*<0}.

Applying Theorem 4 to @, D,, D3 respectively
with the common variables G and Z, the
corresponding LMIs are feasible when the free
variables are prescribed as & =1.02 and & =&

=0.5. One of the robustly @-stabilizing gains is
obtained by K =[-0.1679 -0.3738].

6. CONCLUSIONS

This paper has presented sufficient conditions for
the quadratic O-stability and further robust @-stability
of dynamic interval systems. A parameter-dependent
Lyapunov function is introduced into the robust @-
stability analysis to reduce the conservatism of
quadratic @-stability condition. This robust @-stability
condition is in terms of partial-vertex-based interval
matrices other than the total vertex matrices of
dynamic interval systems. The results are also
extended to the @-stabilization problem for any LMI
O-region. All the proposed conditions can be
simplified to a set of LMIs and thus the approach in
this paper leads to a less computational complexity
than that in previous literature.
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