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Delay-Dependent Guaranteed Cost Control for Uncertain
Neutral Systems with Distributed Delays

Yongmin Li, Shengyuan Xu*, Baoyong Zhang, and Yuming Chu

Abstract: This paper considers the problem of delay-dependent guaranteed cost controller design
for uncertain neutral systems with distributed delays. The system under consideration is subject
to norm-bounded time-varying parametric uncertainty appearing in all the matrices of the state-
space model. By constructing appropriate Lyapunov functionals and using matrix inequality
techniques, a state feedback controller is designed such that the resulting closed-loop system is
not only robustly stable but also guarantees an adequate level of performance for all admissible
uncertainties. Furthermore, a convex optimization problem is introduced to minimize a specified
cost bound. By matrix transformation techniques, the corresponding optimal guaranteed
controller can be obtained by solving a linear matrix inequality. Finally, a simulation example is
presented to demonstrate the effectiveness of the proposed approach.

Keywords: Distributed delay, linear matrix inequality, neutral systems, robust guaranteed control,

robust stabilization.

1. INTRODUCTION

The guaranteed cost control problem of uncertain
systems was first put forward in [1] and then has been
extensively investigated; the purpose is to design a
controller to robustly stabilize an uncertain system
while guaranteeing an adequate level of performance.
On the other hand, as is well known, time delay is
frequently one of the main causes of instability and
poor performance of a control system [7,13,14].
Therefore, analysis and synthesis of time-delay
systems have attracted a great deal of attention
[9,17,19]. It is noted that the guaranteed cost control
approach has been extended to various types of
uncertain time-delay systems; see, e.g., [10,15,18,20-
22,25], and the references therein. When not all the
states are available for feedback, dynamic output
feedback controllers were designed in [16] to solve
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the guaranteed cost control problem.

In practical applications there are numerous control
systems depending not only on state delays but also
on derivatives of delayed states. Such systems are
referred to as neutral delay systems [2,27,28,30]. The
guaranteed cost control problem related to neutral
delay systems has been studied in [23,24] and [26],
respectively. It is worth noting that although the
design methods used in these references are delay-
independent, the achieved guaranteed costs depend on
the size of the time delay. This fact suggests that
delay-dependent design method give lower cost value
than the delay-independent ones [3,11,14]. When the
number of summands in a system equation is
increased and the differences between neighboring
argument values are decreased, systems with
distributed delays will arise. Distributed delays can
also be found in the modeling of feeding systems and
combustion chambers in a liquid monopropellant
rocket motor with pressure feeding [4,6]. Therefore,
systems with distributed delays have received much
attention in the past years. Results on stability analysis
and controller design for such systems can be found in
[7]. However, the problem of delay-dependent
guaranteed cost control for uncertain neutral systems
with distributed delays has not been investigated so
far, which is still open and remains challenging. This
motivates the present study.

In this paper, by utilizing the free weighing matrix
method [12], we consider the problem of delay-
dependent guaranteed cost control for uncertain
neutral delay systems with time-varying norm-
bounded parametric uncertainties and distributed
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delays. The performance index is assumed to be
integral quadratic cost functions. The purpose of the
problem we address is the design of a state feedback
controller such that the closed-loop system is stable
and an adequate level of performance is guaranteed
for all admissible uncertainties. A sufficient condition
for the solvability of this problem is obtained in terms
of an LMI. When this LMI is feasible, an explicit
expression of the desired guaranteed cost controller is
given. It is worth pointing out that the LMI approach
developed in the paper does not involve any tuning of
parameters and thus can be computed effectively by
using interior point algorithm [31].

Notation: Throughout this paper, for real
symmetric matrices X and Y, X >Y (respectively,
X >Y ) means that the matrix X —Y is positive
semi-definite (respectively, positive definite). 7 is an
identity matrix with appropriate dimension. The
superscript “T ” represents the transpose of a matrix.
The notation “*” is used as an ellipsis for terms that
are induced by symmetry. Matrices, if the dimensions
are not explicitly stated, are assumed to have
compatible dimensions for algebraic operations.

2. PROBLEM FORMULATION

Consider a class of uncertain neutral systems with
distributed delays described by:

2 x() =[A+ AAWD]x(t) + [ 4, + A4, ()]
X x(t =7 (1) +[ 4y + A4y ()]
X X(1 =7y (0) +[ 4y, +Ady, (1]

x Lt_;,} x(s)ds +[B + AB(O)]u(),

X(t) = (/’(’), te [—h,O],

where x(r)e R"is the state; u(f) e R™is the control
input; @(¢)is the continuously differentiable initial
function on [~4,0] with A=max{h,h,h}; 4, 4,
Ay, Ay, and B are known real-valued matrices

representing time-varying parameter uncertainties,
and are assumed to be of the form:

[AA(@), Ay, (1), Ady (1), A4y, (1), AB(1)]

6y
:W(t)[N19N27N37N47N5],

where M,N{,N,,N;,N, are known real constant
matrices of appropriate dimensions and F():R—

R"™2 is an unknown time-varying matrix function
satisfying:

FOTF()<l1. )

The wuncertain matrices AA(f), AA4,(r), AAa,1 (),

Ay, (1) and AB(r) are said to be admissible if both

(1) and (2) hold. 71(f) and 7,(t) are the time-
varying delays of the system and satisfy:

0<r()<h, i=12, 3)
#(t) <dy, 1y ()< dy <. ()

Now, consider the following linear state-feedback
controller:

u(t) = Kx(?), &)

where K € R™" is the controller gain to be determined.
Then the resulting closed-loop system from > and
(5) as:

X :x(t) = A@O)x(t) + 4, ()x(t — 7 (1))
+ Ay (O3t — 72 (0) + 4y, (D (1),
x(t) = p(),t €[-h,0],
where
A(t) = A+ BK + AA(t) + AB(1)K,
Ay () = Ay + A4 (2), Ag (1) = Ay + Ady (1),

Ag, (0)= Ay + My (1), () = L’_h} x(s)ds.

Associated with the delay system (X°) we define the
cost function as:

J = [ 10 Rix(e) + u(®) Ryu(o)let, (6)

where R, and R, are given matrices with R; >0,
R, >0. Throughout this paper, we shall use the
following definition:

Definition 1: The uncertain neutral delay system
(2) is said to be robustly stable if the equilibrium
solution of system (2 ) with u(f)=0 is globally
asymptotically stable for all admissible uncertainties
AA(F), A4y(t), Adg (1), Ady (1) and AB(?).

The guaranteed cost control problem to be
addressed in this paper can be formulated as follows:
Given three scalars A, >0,i=1,2,3, design a state-
feedback controller in (5) such that for any time-
varying delays 7;(¢) satisfying (3) and (4), i=12,
the closed-loop system (X ) is robustly stable and the
cost-function in (6) has an upper bound for all
admissible uncertainties. In this case, (5) is said to be
a guaranteed cost state-feedback controller.

Before concluding this section, we introduce the
following lemma, which will be used to derive our
main results in the next section.

Lemma 1 [29]: Let 4,D,S,W and F be real
matrices with appropriate dimensions such that
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W>0 and FTF<I. Then we have the following
results:

(1) For any scalar £>0 and vectors x and y of
appropriate dimensions,

2xTDFSy <& % DD x + gyTSTSy.
(2) For any scalar ¢ >0 suchthat W — DD’ >0,

(A +DFS)T W= (4 + DFS)
<ATW -eDDTY 14+ £7'STs.

3. MAIN RESULTS

In this section, we will give a sufficient condition
for the robust guaranteed cost control problem
formulated in the previous section.

Theorem 1: Consider the uncertain neutral time-

delay system >° and the cost function (6). Then, for
given matrices R, >0,R, >0 and three scalars

h; >0,i=1,2,3, the guaranteed cost control problem
is solvable if there exist matrices X >0, X >0,
X51>0, X5p >0, X3>0, ,>0, >0, S}, S,,

W, W, and scalars g >0, &, >0, & >0, &, >0,
such that the following LMI holds:

H H
e o
*  Hy

where

O, =x4" +Y"BT,Q, = xnNT +YT NI,
Q) =AX +BY +Q + X + Xy, + 2 X3
-8 =S - W,
Quy = A X +W, =W, Q3 =8 -7,
Qp =Wy + W) —(1-d)) X,
Q33 =5, +87 —(1-dy) X,
Qyq =—(1-dy) Xy, Q55 = - X3,
Qg6 = WPy — 2 X, Q77 = by Py 21y X,
Qg = e, MMT — I Py, Qg = 3MMT 1y ',

Q) Qn Qs
Qs 0

* * Q33
H11 =| = * *
* * *
* * *
* * *

Ag X A, X hW S|
0 0 AW 0
0 0 0 S

Qy 0 0o o0 |

* * Qg 0
* * * Q77
Q Q Q Q,
x4l x4  x4f  xnNT
0 0 0 0
T
Hyy=| Xpdy Xpdj Xndi XN
T T T
X4j, X4y, X4y XN,
0 0 0 0
0 0 0 0
Q O Q M x Y]
xvIooxwI o xvI 0 o0 o0
0 0 0O 0 0 0
T
X22N3 XZQN?{ X22N3T 0 0 0 |
XN{ xnNI  xn 0 o0 o
0 0 0 0 0 0
0 0 o 0 0 0]

H22 = diag{QSS,Qgg,g4MMT - X22,_€21,
— &3], —ey1,—&1,—&1,~R{',—R;'}.

In this case, a desired guaranteed cost state-feedback
controller can be chosen as:

u(?) = YX 'x(1), (8)
and the corresponding cost function in (6) satisfies:
T =00 X790+ [, () XX p(s)ds
+ [, 07X XX (o
+ [[, o) Xdotsxds
" fh} ([ o6y a6y x! o
< XX jo () df)ds
; jf ds f 0+ )00 X1 XX\ p(6)d0
+ [, [ o) Ppts)dsde

; fhz [ o) Pyg(s)dsde.
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Proof: Under the condition of the theorem, we first
show the robust stability of the closed-loop system

(Z°). To this end, we denote

-1 -1
P:X N K=YX , H:PXIP, P21=PX21P,
P, =PX;P, P, =PF;', W,=PWP, W,=PW,P,
S|=PS\P, $,=PS,P, Pp=Xy, B=R"

then, pre- and post-multiplying (7) by diag{P,P,P,
P,,P,P,P,1,1,1,1,1,1,1,1,1,I}, we obtain

H, H
n Mo g (10)
*  Hy

where

Oy =a" +KTBT, 0y = NI +KTNT,

Q) =PA+PBK + PQ,P+F, + Py, + hiP,
-8 =87 - -,

Quy = Pl + W - Wy O3 =5, - 57,

Oy =Wy + Wy —(1-d)R,

Q33=8,+5] —(1-dy)Py,

Quy =—(1-dy)Pp, Q55 =B,

Qo = W PP,P — 2 P, 4y = hyPP,P — 21, P,

Qgg = ey MMT — B\ B1,

Qgo =esMM" — 1y B!,

ﬁn:

_ﬁll 912 Q13 PAd1 PAd2 hlpfll h2‘§1

* Qp 0 0 0 mW, 0

* % Oy 0 0 0 S,

* Qu 0 0 0 |

* * % Qs 0 0

* * Ed P % Q66 0
L * * * * * * fz,”
Hyp =

0 0 0 0 0 0 0
0 0 0 0 0 0 0

PM I KT
0 0 0
0 0 0
0 0 0|
0 0 0
0 0 0
0 0 0|

ﬁzz = diag{ﬁgg,f299,$4MMT - })2421,—82]’
- 831’ —&4l,—al,-&l, _Rl_] ,_Rz_l}.

It is easy to verify that

(B -P)R(P - P20, (11)

(%' -P)B(F - P)20, (12)
which imply

WPPP —2h P>~y P;}, (13)

‘hyPP,P—2h,P >, P\ (14)

This together with (10) provides

Hy Ho g, (15)
*  Hy
where
Qg5 = ~h Py, Q7 =~y B, (16)
ﬁll -
* Q22 0 O 0 h1W2 0~
+ % Qg 0 0 0 hS
* * * * QSS 0 O
L * * * * % % 677
Qa7
Denote
A=[A+BK, 4,,0,4;, 4, ,0,0], (18)
N =[N, + NsK,N,,0,N;,N,4,0,0], - (19)

then, by the Schur complement formula and (3), we
obtain

Hy, +diag{R + KT R,K0,0,0,0,0,0}
+(gtre +55 + e HONTN (20)

~ AT [(esMMT — B3 B
3 2 15
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+(eMM" - BBy
+(esMMT —miPh N <o,

where

Qs =110, Q77 = -1, (OB, 1)

Hy =

Q QO P4y Pdy, w0 1,08 |
* Qpn 0 0 0 (W, 0
* * Q33 0 0 0 T (t)S'z
* % x QL0 0 0
ok x w0 Qo 0 0
* * #* * * Qg6 0

L * * ® * * * Q;;

(22)

Now, for the closed-loop system (2°), we define the
following Lyaponov functional candidate:

V)=V + ) +Vy (D) + V(1)

(23)
V3O + V() + Vs () + Ve (1),

where
Vo) =x(e)" Px(1),
Ho= [, w6 Rxs)s,
V)= [ 5 Pux(sias,
V)= [, #) Pois)ds,
B0 = [, 1[0 dow [ x©0) doas
Vo= | ’: ds[ (0+s-0x(O) Bx(6)do,
Ve(r) = jj’hl [, 3() Bi(s)dsdo,
Vo= ", [, 56 Bris)dsae,
then, the time derivative of ¥(f) along the trajectory

of system ( X°) is given by

V()= Vo(’)AJFV1(f)+V21(f)+sz(f)

) . . ; (24)
+V3(0) + V(1) + V5 (6) + Vi (2),

where
Vo (1) = 2x(r)T Px(r)
= 2x(t)" PLAO)x() + 45, ()x(t — 7,(2)

+ Ay (DX(1 =7 (0) + Ay, (Da(1)]

+2x(t)T Wl Jj (t))'c(s)ds

-7

—2x(6) Wi[x(6) — x(t — 7, ()]

+2x(t — 7, (1)) W, f O™

-7

—2x(t = 7y (1) Wox(t) — x(t - 7, ()]
+2x(0) §, J:—Tz(f) (0)d6

—2x(6)" §,[x(t) - x(t — 7, (1))]
w22 -5, 5, | 1(0)8

—2x(t — 7, (1)) S,[x(0) — x(t — 7, ()],
AGEEOW:10)

—(1-dx(t -7 () Bx(t - 7,()),
Vo1 (6) < x(O)" Pyyx(t)

~ (1= dy)x(t ~ 7 () Rx(t 75 (1)),
Var () < x(8) Poyx(t)

— (= dy)3(t — 7 (1) Popi(t —75(1),
AG =§x(x)TP3x(t)

- J:—h; x(0) Bx(6X0—1 + y)d0,
I/'75 (t) < x(t)T h]é;)if(t) — -[t—rl(t) J'C(S)T E;X'(S)ds,

V<3 mBo- [ x(0) Bx@xe

By Lemma 2, there exist & >0, & >0, 53 >0, and
&4 >0, such that

) K2
() < gxm%x(r)

+ .[’—;,3 x(0) Px(8)(6 1 + hy)dO,

2x() PA(t)x(t) + 2x(0)" PA, ()x(t — 7,(1))
+2x() PAg (D%(t — 75 (1)) + 2x(t)| PAy (Nar(t)
< 2x(t) P(A+ BK)x(f)
+2x() PAyx(t =7y (8)) + 2x())| PAz i(t — 75 (1))
+2x() PAg, (1) + &x(t)" PMM" Px(t)
+ e n(t,5,0) NT N(t,s,6),
) Py (1)
<n(t,s,0) (AT (h B
—e,MMTY 1 4+ &' NT NYy(t,5,6),
MO by P ()
<n(t,s.0) (A" (' By
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- 53MMT)_l A+ 53_1]VT]\7]77(I, 5,0),
%(6) Ppi(r)
<n(t,s,0)" 14" (B,
- 54MMT)_1 A+ EZIJVT]V]U(I,S,H),
where
n(t,5,0) =[x(0) . x(t =0 @) 2~ 1, (),
M- (O) a®) V.
Therefore, from (20) we obtain
< m f_ﬁ ® f—q 1650 25)
xEn(t,s,0)dsd0 <0,

where
E:[—_]H+(81'1+82_1+53_1+5;1)]\7T]V

- A (eMM" - BT

+ (e MM — BT 4 (e MMT - P4

Hence, by [5,8], it follows from (25) that the closed-

loop system ( X°)is asymptotically stable for all
admissible uncertainties.
In the next, we note that (20) implies

V()< —x(t)" (R, + KT RyK)x(2). (26)

Integrating both sides of (26) from 0 to any 7 >0
gives:

IOT x(OT (R + KT RyK)x(t)dt
< p(0)" Pp(0) + ﬁ’hl o(5)T Bo(s)ds
# [, o) Pagtxds+ [, ot Pragss
* J_O,,3 ([ o0) a6T BL[ p(6) d6lds
+[Pas[" ©+9)00) Pp(o)io
¥ fi,l [ 0) Pig(s)dsdo
+1°,, 1,967 Bpts)dsde. @)

Therefore (9) is satisfied. This completes the proof. O

It is worth noting that Theorem 1 gives a set of
guaranteed cost controllers characterized in terms of a
set of solutions to LMI (7). Each guaranteed cost
controller ensures the quadratic stability of the
resulting closed-loop system and an upper bound on

the closed-loop cost function is given by (6). In view
of this, it is desirable to find an optimal guaranteed
cost controller which minimizes the upper bound (9).
This problem is dealt with in the following theorem.

Theorem 2: Consider the uncertain neutral delay
system (2. ) and the cost function (6). Suppose the
following optimization problem

&+ #Y L), (29

min
¢,C.DEQ,GLZT; i=12,...,

s.t.

(1) LMI inTheorem],
M T 1 lod

@ Pl @ T <o
L =X L x -XXT'X
[-r, DT | r, ET

4 <0, (5) <0,
L x —XX5 X L x —X5
[ T [ GT

I P <0,
L x o —XX3X L+ XXX
i T [ T

@ Lo, @ “ <o
R [+ R

has a solution for &, C, D, E, Q, G, L, Z,
I;,i=12,...,7, where

.E)hl p(s) p(s)ds =CCT,

fhz () p(s)ds = DDT

Ii,z ()7 ¢(s)ds = EET,

Iﬁ’,@[f} o(6) doY [ jo P(0) d6)ds = 00",
ff ds f (0 +5)p(8) p(0)d6 = GG,

If)hl Jj o(s) Pyg(s)dsd® = LL

Ii)hz J:(p(s)TPS(b(S)deH = ZZT,

Then, the corresponding guaranteed cost controller in
the form of (8) is an optimal guaranteed cost
controller in the sense that under this controller the
upper bound of the closed-loop cost function (9) is
minimized.

Proof: It can be done easily by Shur complement
formula, and is thus omitted.

Remark 1: Note that not all the matrix inequalities
in Theorem 2 are LMIs. Some of them are quadratic-
matrix inequality (QMI). In order to use the convex
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optimization technique, the QMI must be converted to
an LMI via some variable changes or transformations.
For this purpose, we apply the congruence
transformation to Theorem 2 to obtain the following
result.

Theorem 3: Consider the uncertain neutral delay
system (2 ) and the cost function (6). Suppose the
following optimization problem

) 7
min +ry . I.), 29
§,C~’,D,E,Q,G~,L,Z,I’i,i=l,2,...,7(5 z’:I ) @9
s.t.
(1) LMI inTheorem],
s T [ ~T
@ O @™ ¢ <
I L * =X
s ~T [ =T
(4) I, D }o, (5) Iy E }<o,
L * Xy L * Xy
[ AT [ ~T
G I E G I P
* -X; | * _X3
[ T I T
®| e L }o, O }o,
L* L* B

has a solution for &, C, D, E’, 0, G, L, Z,
I';,i=12,...,7, where

C=x,X"'C,D=x,x'D,E=X,, X'E,
0=X,x"9,G=x;x"1G.

Then, the corresponding guaranteed cost controller in
the form of (8) is an optimal guaranteed cost
controller in the sense that under this controller the
upper bound of the closed-loop cost function (9) is
minimized.

Remark 2: The model discussed in our article
contains distributed delay and variable delays both in

state item and neutral item. If we set 4q4, =0,
Ay, =4y, l=h, hy =d in system (X)), it becomes
an uncertain neutral time-delay system which has
been proposed in reference [24]:
2 x(0) =[A+ A(O)]x(t) + [ 4, + A4y, (1)]
xx(t—h)+[Ad +AAd(t)]
xxX(t —d) +[B + AB(t)]u(¢),
X(f) = (D(t)at € [—h,O]
For this system, by using the same method as that in
Theorem 1 and cost function (6), we can easily give a
delay-dependent sufficient condition for the solvablity

of the robust guaranteed cost control problem, which
is different from that in reference [24].

(30)

4. AN ILLUSTRATION EXAMPLE

In this section we present an example to illustrate
the theory in the previous sections. Consider system

(2) with:

-09 08 09 0
4=|05 09 03|, M=|02],
0.7 03 02 0.1
-1 1 02 10
4,=(02 0 03|,  B=[12 05|,
08 0 -1 0 -1
~02 0.1 0.2 02 0.5 02
A4;=[06 0 03], 4,=/06 0 03
02 03 —0.5 03 03 -0.1
0.5 02 0.1
03 0
R =02 03 0| Rz{o 0'2}
0.1 0 04

N; =[0.1,0,0.1], N, =[0,0.1,0.1],
N3 =[0.1,0,0.1], N4 =[0,0.2,0.2], N5 =[0,0.1],
hl = 0.5, ]’h = 06, h3 = 0.6, dl :1.2, d2 = 06,

assumed to be
o) =[1,0,exp(-1)]" for all ¢e[-0.6,0]. Then, by

solving the LMIs in Theorem 3, the optimal
guaranteed cost controller gain is

the initial condition s

-10.2547 -13.2759 -4.4138
| 18173 09256 3.2401 |
Furthermore, the corresponding closed-loop

optimal cost function is J =18.3923. The simulation
results of the state responses of both the open-loop
and closed-loop systems are shown in Figs. 1 and 2,

10
3x

2.5

2F

1.5

s N N \
20 40 60 80 100 120 140
time in second

Fig. 1. State response of the open-loop system.
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— 1

L v X2
031~ -=x3

L . " L L L s . .
[¢] 10 20 30 40 50 60 70 80 90 100

time in second

Fig. 2. State response of the closed-loop system.

respectively. From these simulation results, it can be
seen that the designed guaranteed controller satisfies
the specified requirements.

Remark 3: If using Theorem 3 to the system
(X' )proposed in reference [24], we can obtain

0.9193

_[-3.9755
B —0.6922  2.3969

—6.3323 —1.8054}

and the corresponding closed-loop optimal cost
function is J =19.4339. But we using the condition
in theorem 3 of the article in [24] to our Example, the
corresponding LMI is not feasible. This demonstrates
that our method is somewhat better than that in [24].

S. CONCLUSIONS

In this paper, we have studied the problem of
guaranteed cost control via memoryless state feedback
controllers for uncertain neutral systems with norm-
bounded time-varying parametric uncertainties and
distributed delays. A sufficient condition for the
existence of guaranteed cost controllers has been
presented. An optimal guaranteed cost controller can
be constructed by solving a certain LML It has been
shown that the proposed guaranteed cost controller
guarantees not only the quadratic stability of the
closed-loop system, but also an adequate level of a
quadratic cost function. An illustrative example has
demonstrated the applicability of the proposed
approach.
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