• Title/Summary/Keyword: thyristor

Search Result 506, Processing Time 0.026 seconds

An Emitter Switched Thyristor with vertical series MOSFET structure (수직형 직렬 MOSFET 구조의 Emitter Switched Thyristor)

  • Kim, Dae-Won;Kim, Dae-Jong;Sung, Man-Young;Kang, Ey-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.392-395
    • /
    • 2003
  • For the first time, the new dual trench gate Emitter Switched Thyristor is proposed for eliminating snap-back effect which leads to a lot of serious problems of device applications. Also, the parasitic thyristor that is inherent in the conventional EST is completely eliminated in the proposed EST structure, allowing higher maximum controllable current densities for ESTs. Moreover, the new dual trench gate allows homogenous current distribution throughout device and preserves the unique feature of the gate controlled current saturation of the thyristor current. The conventional EST exhibits snap-back with the anode voltage and current density 2.73V and $354/{\S}^2$, respectively. But the proposed EST exhibits snap-back with the anode voltage and current density 0.93V and $58A/{\S}^2$, respectively. Saturation current density of the proposed EST at anode voltage 6.11V is $3797A/{\S}^2$. The characteristics of 700V forward blocking of the proposed EST obtained from two dimensional numerical simulations (MEDICI) is described and compared with that of the conventional EST.

  • PDF

Improved Trigger System for the Suppression of Harmonics and EMI Derived from the Reverse-Recovery Characteristics of a Thyristor

  • Wei, Tianliu;Wang, Qiuyuan;Mao, Chengxiong;Lu, Jiming;Wang, Dan
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1683-1693
    • /
    • 2017
  • This paper analyses the harmonic pollution to power grids caused by thyristor-controlled devices. It also formulates a mathematic derivation for the voltage spikes in thyristor-controlled branches to explain the harmonic and EMI derived from the reverse-recovery characteristics of the thyristor. With an equivalent nonlinear time-varying voltage source, a detailed simulation model is established, and the periodic dynamic switching characteristic of the thyristor can be explicitly implied. The simulation results are consistent with the probed results from on-site measurements. An improved trigger system with gate-shorted circuit structure is proposed to reduce the voltage spikes that cause EMI. The experimental results indicate that a prototype with the improved trigger system can effectively suppress the voltage spikes.

A Study on the Reversible SCR Servo Amplifier (정역전이 가능한 SCR 서보증폭기에 관한 연구)

  • Ahn, B. W.;Park, S. K.
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.2
    • /
    • pp.190-198
    • /
    • 1995
  • Many industrial servo amplifiers employ power transister as output device. Thyristor converters are not adopted to drive servo motor, although thyristor is superior to power TR in power rating, noise immunity, price, and size. The reason is, thyristor has no ability of self turn - off. Here in this paper line commutation, in which thyristor is turned off naturally since cathode voltage is higher than anode as time goes by, is employed to turn on thyristor with a delicate sequence. We developed thyristor servo amplifier which does not cause any damage on thyristor because it is designed to prevent triggering the two SCRs in the same arm simultaneously. And it was made clearly how to trigger SCR without any power line shorting and also harmonic analysis is carried out with the aid of FFT analyzer and proved that it can be used even severe reactive load. The designed circuit operated as a good DC amplifier in conventinal servomotor and the results can be use as a position control system application.

  • PDF

A Synthetic Test Circuit for HVDC Thyristor Valve Test with Simplified Turn-Off Circuit of Auxiliary Thyristor (보조 사이리스터의 턴-오프 회로를 간소화한 HVDC 사이리스터 밸브 시험용 합성시험회로)

  • Jung, Jae-Hun;Goo, Beob-Jin;Jeo, Han-Je;Nho, Eui-Cheol;Han, Byung-Moon;Chung, Yong-Ho;Baek, Seung-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.475-480
    • /
    • 2014
  • This study proposes a new synthetic test circuit (STC) for HVDC thyristor valve tests. The conventional STC with a 2-phase chopper requires a 3-phase transformer, a 3-phase diode rectifier, and an IGBT to facilitate the off state of an auxiliary thyristor. In the proposed STC, these three components are replaced with one diode and one resistor, which result in the simplified implementation of the hardware of the STC. Simulation and experimental results demonstrate the validity of the proposed scheme.

A New Synthetic Test Circuit for Testing Thyristor Valve in HVDC Converter (HVDC 컨버터의 Thyristor Valve 시험을 위한 새로운 합성시험회로)

  • Kim, Kyeong-Tae;Han, Byung-Moon;Jung, Jae-Hun;Nho, Eui-Cheol;Chung, Yong-Ho;Baek, Seung-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.191-197
    • /
    • 2012
  • This paper proposes a new synthetic test circuit (STC) to confirm the switching operation of thyristor valve in HVDC converter. The proposed STC uses a 6-pulse thyristor converter with 2-phase chopper as a high-current source to provide turn-on current to the test valve. The operation of proposed STC was verified through theoretical analysis and computer simulations. Based on computer simulations, a hardware scaled model was built and tested to confirm the feasibility of implementing a real-size test facility. The proposed system has an advantage of simple structure and operation over the existing system.

Fabrication of a fast Switching Thyristor by Proton Irradiation Method (양성자 조사법에 의한 고속스위칭 사이리스터의 제조)

  • Kim, Eun-Dong;Zhang, Changli;Kim, Sang-Cheol;Kim, Nam-Kyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.12
    • /
    • pp.1264-1270
    • /
    • 2004
  • A fast switching thyristor with a superior trade-off property between the on-state voltage drop and the turn-off time could be fabricated by the proton irradiation method. After making symmetric thyristor dies with a voltage rating of 1,600 V from 350 $\mu$m thickness of 60 $\Omega$ㆍcm NTD-Si wafer and 200 $\mu$m width of n-base drift layer, the local carrier lifetime control by the proton irradiation was performed with help of the HI-13 tandem accelerator in China. The thyristor samples irradiated with 4.7 MeV proton beam showed a superior trade-off relationship of $V_{TM}$ = 1.55 V and $t_{q}$ = 15 $\mu$s attributed to a very narrow layer of short carrier lifetime(~1 $\mu$s) in the middle of its n-base drift region. To explain the small increase of $V_{TM}$ , we will introduce the effect of carrier compensation at the low carrier lifetime region by the diffusion current.ffusion current.t.

A Studies for Sequential Mode Change Control Algorithm of the Parallel Dual Converter of Using Thyristor for Supplying the Urban Railway DC Power (도시철도의 직류전력 공급을 위한 사이리스터를 사용한 병렬 듀얼 컨버터의 순차적 모드 전환 제어 알고리즘에 대한 연구)

  • Han, Sung-Woo;Kim, Sung-An;Cho, Yun-Hyun;Byun, Gi-Sig
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.3
    • /
    • pp.511-519
    • /
    • 2016
  • This paper is proposed control algorithm for the using thyristor of the parallel dual converter for Urban railway power supply in order to return the regenerative power generated by regenerative braking in urban railway train. Conventional control algorithm of Thyristor dual converter for urban railway power supply has voltage variation within a control range of hysteresis band. The purposed control algorithm of the parallel thyristor dual converter is to maintain a constant voltage without voltage variation in accordance with variable load through the Sequential mode change. And the control algorithm need calculating optimum initial firing angle to consider magnitude of the load current slope. For this purpose, Proposed algorithm for sequential conversion mode of the dual converter was verified by applying for the simulation.

Study on the Blocking Voltage and Leakage Current Characteristic Degradation of the Thyristor due to the Surface Charge in Passivation Material (표면 전하에 의한 Thyristor 소자의 차단전압 및 누설전류특성 연구)

  • Kim Hyoung-Woo;Seo Kil-Soo;Bahng Wook;Kim Ki-Hyun;Kim Nam-Kyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.1
    • /
    • pp.34-39
    • /
    • 2006
  • In high-voltage devices such as thyristor, beveling is mostly used junction termination method to reduce the surface electric field far below the bulk electric field and to expand the depletion region thus that breakdown occurs in the bulk of the device rather than at the surface. However, coating material used to protect the surface of the device contain so many charges which affect the electrical characteristics of the device. And device reliability is also affected by this charge. Therefore, it is needed to analyze the effect of surface charge on electrical characteristics of the device. In this paper, we analyzed the breakdown voltage and leakage current characteristics of the thyristor as a function of the amount of surface charge density. Two dimensional process simulator ATHENA and two-dimensional device simulator ATLAS is used to analyze the surface charge effects.

Device characteristics of 2.5kV Gate Commutated Thyristor (2-5kV급 Gate Commutated Thyristor 소자의 제작 특성)

  • Kim, Sang-Cheol;Kim, Hyung-Woo;Seo, Kil-Soo;Kim, Nam-Kyun;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.280-283
    • /
    • 2004
  • This paper discribes the design concept, fabrication process and measuring result of 2.5kV Gate Commutated Thyristor devices. Integrated gate commutated thyristors(IGCTs) is the new power semiconductor device used for high power inverter, converter, static var compensator(SVC) etc. Most of the ordinary GTOs(gate turn-off thyristors) are designed as non-punch-through(NPT) concept; i.e. the electric field is reduced to zero within the N-base region. In this paper, we propose transparent anode structure for fast turn-off characteristics. And also, to reach high breakdown voltage, we used 2-stage bevel structure. Bevel angle is very important for high power devices, such as thyristor structure devices. For cathode topology, we designed 430 cathode fingers. Each finger has designed $200{\mu}m$ width and $2600{\mu}m$ length. The breakdown voltage between cathode and anode contact of this fabricated GCT device is 2,715V.

  • PDF