• Title/Summary/Keyword: through via

Search Result 5,496, Processing Time 0.036 seconds

The Effects of Additives on the Electropolishing of Copper Through Via (구리 Through Via 전해연마에 미치는 첨가제의 영향 연구)

  • Lee, Suk-Ei;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.1
    • /
    • pp.45-50
    • /
    • 2008
  • The effects of electrolytes and additives on the electropolishing of 50 and $20{\mu}m$ diameter copper via were investigated to flatten 3D SiP through via. The termination time was determined with analysis of applied potential on anode and cathode to avoid excess electropolishing. Acetic acid played a role of accelerator and glycerol played a role of inhibitor in phosphoric acid electrolytes. The overplated copper on the through via was effectively electropolished in the phosphoric electrolytes with acetic acid and glycerol addition. The electropolishing was terminated at the point of abrupt change of applied potential to remove only overplated copper on the through via.

  • PDF

Study of SI Characteristic of Multilayer PCB with a Through-Hole Via (관통형 비아가 있는 다층 PCB의 SI 성능 연구)

  • Kim, Li-Jin;Lee, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.188-193
    • /
    • 2010
  • In this paper, SI(Signal Integrity) characteristic of the 4-layer PCB(Printed Circuit Boards) with a through-hole via was analyzed by impedance mismatching between the through-hole via and the transmission line, and deterioration of clock pulse response characteristic due to the P/G plane resonances which are generated between the power and the ground plane. The minimized impedance mismatching between the through-hole via and the transmission line for the improving of SI characteristic is confirmed by the TDR(Time Domain Reflector) simulation and lumped element modeling of the through-hole via. And the cancellation method of P/G plane resonances for improvement of the SI characteristic is represented by simulation result.

Mechanical Reliability Issues of Copper Via Hole in MEMS Packaging (MEMS 패키징에서 구리 Via 홀의 기계적 신뢰성에 관한 연구)

  • Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.29-36
    • /
    • 2008
  • In this paper, mechanical reliability issues of copper through-wafer interconnections are investigated numerically and experimentally. A hermetic wafer level packaging for MEMS devices is developed. Au-Sn eutectic bonding technology is used to achieve hermetic sealing, and the vertical through-hole via filled with electroplated copper for the electrical connection is also used. The MEMS package has the size of $1mm{\times}1mm{\times}700{\mu}m$. The robustness of the package is confirmed by several reliability tests. Several factors which could induce via hole cracking failure are investigated such as thermal expansion mismatch, via etch profile, and copper diffusion phenomenon. Alternative electroplating process is suggested for preventing Cu diffusion and increasing the adhesion performance of the electroplating process. After implementing several improvements, reliability tests were performed, and via hole cracking as well as significant changes in the shear strength were not observed. Helium leak testing indicated that the leak rate of the package meets the requirements of MIL-STD-883F specification.

  • PDF

Thermo-Mechanical Reliability of TSV based 3D-IC (TSV 기반 3차원 소자의 열적-기계적 신뢰성)

  • Yoon, Taeshik;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2017
  • The three-dimensional integrated circuit (3D-IC) is a general trend for the miniaturized and high-performance electronic devices. The through-silicon-via (TSV) is the advanced interconnection method to achieve 3D integration, which uses vertical metal via through silicon substrate. However, the TSV based 3D-IC undergoes severe thermo-mechanical stress due to the CTE (coefficient of thermal expansion) mismatch between via and silicon. The thermo-mechanical stress induces mechanical failure on silicon and silicon-via interface, which reduces the device reliability. In this paper, the thermo-mechanical reliability of TSV based 3D-IC is reviewed in terms of mechanical fracture, heat conduction, and material characteristic. Furthermore, the state of the art via-level and package-level design techniques are introduced to improve the reliability of TSV based 3D-IC.

A design of silicon based vertical interconnect for 3D MEMS devices under the consideration of thermal stress (3D MEMS 소자에 적합한 열적 응력을 고려한 수직 접속 구조의 설계)

  • Jeong, Jin-Woo;Kim, Hyeon-Cheol;Chun, Kuk-Jin
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.112-117
    • /
    • 2008
  • Vertical interconnection scheme using novel silicon-through-via for 3D MEMS devices or stacked package is proposed and fabricated to demonstrate its feasibility. The suggested silicon-through-via replaces electroplated copper, which is used as an interconnecting material in conventional through-via, with doped silicon. Adoption of doped silicon instead of metal eliminates thermal-mismatch-induced stress, which can make troubles in high temperature MEMS processes, such as wafer bonding and LP-CVD(low pressure chemical vapor deposition). Two silicon layers of $30{\mu}m$ thickness are stacked on the substrate. The through-via arrays with spacing $40{\mu}m$ and $50{\mu}m$ are fabricated successfully. Electrical characteristics of the through-via are measured and analyzed. The measured resistance of the silicon-through-via is $169.9\Omega$.

Development of the Latest High-performance Acid Copper Plating Additives for Via-Filling & PTH

  • Nishiki, Shingo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.19 no.4
    • /
    • pp.39-43
    • /
    • 2012
  • Via-filling plating and through-hole plating are absolutely imperative for manufacturing of printed-wiring board. This Paper is introducing the latest developments of our company worked on the high-performance of acid copper plating additives for them.

3D Packaging Technology Using Femto Laser (팸토초 레이저를 이용한 3차원 패키징 기술)

  • Kim, Ju-Seok;Sin, Yeong-Ui;Kim, Jong-Min;Han, Seong-Won
    • Proceedings of the KWS Conference
    • /
    • 2006.10a
    • /
    • pp.190-192
    • /
    • 2006
  • The 3-dimensional(3D) chip stacking technology is one of the leading technologies to realize a high density and high performance system in package(SIP). It could be found that it is the advanced process of through-hole via formation with the minimum damaged on the Si-wafer. Laser ablation is very effective method to penetrate through hole on the Si-wafer because it has the advantage that formed under $100{\mu}m$ diameter through-hole via without using a mask. In this paper, we studied the optimum method for a formation of through-hole via using femto-second laser heat sources. Furthermore, the processing parameters of the specimens were several conditions such as power of output, pulse repetition rate as well as irradiation method and time. And also the through-hole via form could be investigated and analyzed by microscope and analyzer.

  • PDF

Extraction of Electrical Parameters for Single and Differential Vias on PCB (PCB상 Single 및 Differential Via의 전기적 파라미터 추출)

  • Chae Ji Eun;Lee Hyun Bae;Park Hon June
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.4 s.334
    • /
    • pp.45-52
    • /
    • 2005
  • This paper presents the characterization of through hole vias on printed circuit board (PCB) through the time domain and frequency domain measurements. The time domain measurement was performed on a single via using the TDR, and the model parameters were extracted by the fitting simulation using HSPICE. The frequency domain measurement was also performed by using 2 port VNA, and the model parameters were extracted by fitting simulation with ADS. Using the ABCD matrices, the do-embedding equations were derived probing in the same plane in the VNA measurement. Based on the single via characterization, the differential via characterization was also performed by using TDR measurements. The time domain measurements were performed by using the odd mode and even mode sources in TDR module, and the Parameter values were extracted by fitting with HSPICE. Comparing measurements with simulations, the maximum calculated differences were $14\%$ for single vias and $17\%$ for differential vias.

The Effects of Current Types on Through Via Hole Filling for 3D-SiP Application (전류인가 방법이 3D-SiP용 Through Via Hole의 Filling에 미치는 영향)

  • Chang, Gun-Ho;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.45-50
    • /
    • 2006
  • Copper via filling is the important factor in 3-D stacking interconnection of SiP (system in package). As the packaging density is getting higher, the size of via is getting smaller. When DC electroplating is applied, a defect-free hole cannot be obtained in a small size via hole. To prevent the defects in holes, pulse and pulse reverse current was applied in copper via filling. The holes, $20\and\;50{\mu}m$ in diameter and $100{\sim}190\;{\mu}m$ in height. The holes were prepared by DRIE method. Ta was sputtered for copper diffusion barrier followed by copper seed layer IMP sputtering. Via specimen were filled by DC, pulse and pulse-reverse current electroplating methods. The effects of additives and current types on copper deposits were investigated. Vertical and horizontal cross section of via were observed by SEM to find the defects in via. When pulse-reverse electroplating method was used, defect free via were successfully obtained.

  • PDF