• Title/Summary/Keyword: three-dimensionality

Search Result 102, Processing Time 0.028 seconds

A Study on Feature Projection Methods for a Real-Time EMG Pattern Recognition (실시간 근전도 패턴인식을 위한 특징투영 기법에 관한 연구)

  • Chu, Jun-Uk;Kim, Shin-Ki;Mun, Mu-Seong;Moon, In-Hyuk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.9
    • /
    • pp.935-944
    • /
    • 2006
  • EMG pattern recognition is essential for the control of a multifunction myoelectric hand. The main goal of this study is to develop an efficient feature projection method for EMC pattern recognition. To this end, we propose a linear supervised feature projection that utilizes linear discriminant analysis (LDA). We first perform wavelet packet transform (WPT) to extract the feature vector from four channel EMC signals. For dimensionality reduction and clustering of the WPT features, the LDA incorporates class information into the learning procedure, and finds a linear matrix to maximize the class separability for the projected features. Finally, the multilayer perceptron classifies the LDA-reduced features into nine hand motions. To evaluate the performance of LDA for the WPT features, we compare LDA with three other feature projection methods. From a visualization and quantitative comparison, we show that LDA has better performance for the class separability, and the LDA-projected features improve the classification accuracy with a short processing time. We implemented a real-time pattern recognition system for a multifunction myoelectric hand. In experiment, we show that the proposed method achieves 97.2% recognition accuracy, and that all processes, including the generation of control commands for myoelectric hand, are completed within 97 msec. These results confirm that our method is applicable to real-time EMG pattern recognition far myoelectric hand control.

Discriminative Manifold Learning Network using Adversarial Examples for Image Classification

  • Zhang, Yuan;Shi, Biming
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.2099-2106
    • /
    • 2018
  • This study presents a novel approach of discriminative feature vectors based on manifold learning using nonlinear dimension reduction (DR) technique to improve loss function, and combine with the Adversarial examples to regularize the object function for image classification. The traditional convolutional neural networks (CNN) with many new regularization approach has been successfully used for image classification tasks, and it achieved good results, hence it costs a lot of Calculated spacing and timing. Significantly, distrinct from traditional CNN, we discriminate the feature vectors for objects without empirically-tuned parameter, these Discriminative features intend to remain the lower-dimensional relationship corresponding high-dimension manifold after projecting the image feature vectors from high-dimension to lower-dimension, and we optimize the constrains of the preserving local features based on manifold, which narrow the mapped feature information from the same class and push different class away. Using Adversarial examples, improved loss function with additional regularization term intends to boost the Robustness and generalization of neural network. experimental results indicate that the approach based on discriminative feature of manifold learning is not only valid, but also more efficient in image classification tasks. Furthermore, the proposed approach achieves competitive classification performances for three benchmark datasets : MNIST, CIFAR-10, SVHN.

Application of deep neural networks for high-dimensional large BWR core neutronics

  • Abu Saleem, Rabie;Radaideh, Majdi I.;Kozlowski, Tomasz
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2709-2716
    • /
    • 2020
  • Compositions of large nuclear cores (e.g. boiling water reactors) are highly heterogeneous in terms of fuel composition, control rod insertions and flow regimes. For this reason, they usually lack high order of symmetry (e.g. 1/4, 1/8) making it difficult to estimate their neutronic parameters for large spaces of possible loading patterns. A detailed hyperparameter optimization technique (a combination of manual and Gaussian process search) is used to train and optimize deep neural networks for the prediction of three neutronic parameters for the Ringhals-1 BWR unit: power peaking factors (PPF), control rod bank level, and cycle length. Simulation data is generated based on half-symmetry using PARCS core simulator by shuffling a total of 196 assemblies. The results demonstrate a promising performance by the deep networks as acceptable mean absolute error values are found for the global maximum PPF (~0.2) and for the radially and axially averaged PPF (~0.05). The mean difference between targets and predictions for the control rod level is about 5% insertion depth. Lastly, cycle length labels are predicted with 82% accuracy. The results also demonstrate that 10,000 samples are adequate to capture about 80% of the high-dimensional space, with minor improvements found for larger number of samples. The promising findings of this work prove the ability of deep neural networks to resolve high dimensionality issues of large cores in the nuclear area.

Facile and Clean Synthetic Route to Non-Layered Two-Dimensional ZIF-67 Nanosheets

  • Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.257-262
    • /
    • 2020
  • Two-dimensional (2D) metal organic framework (MOF) nanosheets (NSs) have recently gained considerable interest owing to their structural advantages, such as large surface area and exposed active sites. Two different types of 2D MOF NSs have been reported, including inherently layered MOFs and non-layered ones. Although several studies on inherently layered 2D MOFs have been reported, non-layered 2D MOFs have been rarely studied. This may be because the non-layered MOFs have a strong preference to form three-dimensionality intrinsically. Furthermore, the non-layered MOFs are typically synthesized in the presence of the surfactant or modulator, and thus developing facile and clean synthetic routes is highly pursued. In this study, a facile and clean synthetic methodology to grow non-layered 2D cobalt-based zeolitic imidazolate framework (ZIF-67) NSs is suggested, without using any surfactant and modulator at room temperature. This is achieved by directly converting ultrathin α-Co(OH)2 layered hydroxide salt (LHS) NSs into non-layered 2D ZIF-67 NSs. The comprehensive characterizations were conducted to elucidate the conversion mechanism, structural information, thermal stability, and chemical composition of the non-layered 2D ZIF-67. This facile and clean approach could produce a variety of non-layered 2D MOF NS families to extend potential applications of MOF materials.

Identification of the associations between genes and quantitative traits using entropy-based kernel density estimation

  • Yee, Jaeyong;Park, Taesung;Park, Mira
    • Genomics & Informatics
    • /
    • v.20 no.2
    • /
    • pp.17.1-17.11
    • /
    • 2022
  • Genetic associations have been quantified using a number of statistical measures. Entropy-based mutual information may be one of the more direct ways of estimating the association, in the sense that it does not depend on the parametrization. For this purpose, both the entropy and conditional entropy of the phenotype distribution should be obtained. Quantitative traits, however, do not usually allow an exact evaluation of entropy. The estimation of entropy needs a probability density function, which can be approximated by kernel density estimation. We have investigated the proper sequence of procedures for combining the kernel density estimation and entropy estimation with a probability density function in order to calculate mutual information. Genotypes and their interactions were constructed to set the conditions for conditional entropy. Extensive simulation data created using three types of generating functions were analyzed using two different kernels as well as two types of multifactor dimensionality reduction and another probability density approximation method called m-spacing. The statistical power in terms of correct detection rates was compared. Using kernels was found to be most useful when the trait distributions were more complex than simple normal or gamma distributions. A full-scale genomic dataset was explored to identify associations using the 2-h oral glucose tolerance test results and γ-glutamyl transpeptidase levels as phenotypes. Clearly distinguishable single-nucleotide polymorphisms (SNPs) and interacting SNP pairs associated with these phenotypes were found and listed with empirical p-values.

Impacts of Zhongyong Values on Green Consumption Behavior of Chinese Consumers (중국 소비자의 중용 가치관이 친환경 소비행동에 미치는 영향)

  • Yi Li;You-Kyung Lee
    • Korea Trade Review
    • /
    • v.46 no.6
    • /
    • pp.109-125
    • /
    • 2021
  • China has achieved remarkable economic growth through an extended period of rapid industrialization. However, adverse environmental issues have become more prevalent during this time of development. In particular, car exhaust emissions in the country have become one of the most substantial causes of environmental degradation in China. To combat these issues, the Chinese government is actively implementing green car policies to mitigate the negative environmental concerns. Likewise, Chinese consumers' interest in green cars has also increasing. Despite these changes in consumer perceptions, research on Chinese consumers' green consumption behavior is still in its infancy. Therefore, an empirical study was conducted to measure the relationship between zhongyong(中庸) values, new ecological paradigm(NEP), and green consumption behavior for 334 Chinese consumers. As a result, the study found that the three sub-dimensions of zhongyong(中庸) values(multi-dimensionality, flexibility and compatibility) and NEP had a significantly positive(+) effect on the purchase intention of green cars. It was also found that NEP positively mediates the effect of flexibility and harmony on purchase intention of green cars. This study is expected to provide academic outcomes on China, which is currently the world's fastest growing green car market, as well as providing practical strategic implications for establishing unique green marketing strategy for China.

An enhanced analytical calculation model based on sectional calculation using a 3D contour map of aerodynamic damping for vortex induced vibrations of wind turbine towers

  • Dimitrios Livanos;Ika Kurniawati;Marc Seidel;Joris Daamen;Frits Wenneker;Francesca Lupi;Rudiger Hoffer
    • Wind and Structures
    • /
    • v.38 no.6
    • /
    • pp.445-459
    • /
    • 2024
  • To model the aeroelasticity in vortex-induced vibrations (VIV) of slender tubular towers, this paper presents an approach where the aerodynamic damping distribution along the height of the structure is calculated not only as a function of the normalized lateral oscillation but also considering the local incoming wind velocity ratio to the critical velocity (velocity ratio). The three-dimensionality of aerodynamic damping depending on the tower's displacement and the velocity ratio has been observed in recent studies. A contour map model of aerodynamic damping is generated based on the forced vibration tests. A sectional calculation procedure based on the spectral method is developed by defining the aerodynamic damping locally at each increment of height. The proposed contour map model of aerodynamic damping and the sectional calculation procedure are validated with full-scale measurement data sets of a rotorless wind turbine tower, where good agreement between the prediction and measured values is obtained. The prediction of cross-wind response of the wind turbine tower is performed over a range of wind speeds which allows the estimation of resulting fatigue damage. The proposed model gives more realistic prediction in comparison to the approach included in current standards.

Prediction Models for Solitary Pulmonary Nodules Based on Curvelet Textural Features and Clinical Parameters

  • Wang, Jing-Jing;Wu, Hai-Feng;Sun, Tao;Li, Xia;Wang, Wei;Tao, Li-Xin;Huo, Da;Lv, Ping-Xin;He, Wen;Guo, Xiu-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.10
    • /
    • pp.6019-6023
    • /
    • 2013
  • Lung cancer, one of the leading causes of cancer-related deaths, usually appears as solitary pulmonary nodules (SPNs) which are hard to diagnose using the naked eye. In this paper, curvelet-based textural features and clinical parameters are used with three prediction models [a multilevel model, a least absolute shrinkage and selection operator (LASSO) regression method, and a support vector machine (SVM)] to improve the diagnosis of benign and malignant SPNs. Dimensionality reduction of the original curvelet-based textural features was achieved using principal component analysis. In addition, non-conditional logistical regression was used to find clinical predictors among demographic parameters and morphological features. The results showed that, combined with 11 clinical predictors, the accuracy rates using 12 principal components were higher than those using the original curvelet-based textural features. To evaluate the models, 10-fold cross validation and back substitution were applied. The results obtained, respectively, were 0.8549 and 0.9221 for the LASSO method, 0.9443 and 0.9831 for SVM, and 0.8722 and 0.9722 for the multilevel model. All in all, it was found that using curvelet-based textural features after dimensionality reduction and using clinical predictors, the highest accuracy rate was achieved with SVM. The method may be used as an auxiliary tool to differentiate between benign and malignant SPNs in CT images.

A Study on Face Image Recognition Using Feature Vectors (특징벡터를 사용한 얼굴 영상 인식 연구)

  • Kim Jin-Sook;Kang Jin-Sook;Cha Eui-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.4
    • /
    • pp.897-904
    • /
    • 2005
  • Face Recognition has been an active research area because it is not difficult to acquire face image data and it is applicable in wide range area in real world. Due to the high dimensionality of a face image space, however, it is not easy to process the face images. In this paper, we propose a method to reduce the dimension of the facial data and extract the features from them. It will be solved using the method which extracts the features from holistic face images. The proposed algorithm consists of two parts. The first is the using of principal component analysis (PCA) to transform three dimensional color facial images to one dimensional gray facial images. The second is integrated linear discriminant analusis (PCA+LDA) to prevent the loss of informations in case of performing separated steps. Integrated LDA is integrated algorithm of PCA for reduction of dimension and LDA for discrimination of facial vectors. First, in case of transformation from color image to gray image, PCA(Principal Component Analysis) is performed to enhance the image contrast to raise the recognition rate. Second, integrated LDA(Linear Discriminant Analysis) combines the two steps, namely PCA for dimensionality reduction and LDA for discrimination. It makes possible to describe concise algorithm expression and to prevent the information loss in separate steps. To validate the proposed method, the algorithm is implemented and tested on well controlled face databases.

An Adversarial Attack Type Classification Method Using Linear Discriminant Analysis and k-means Algorithm (선형 판별 분석 및 k-means 알고리즘을 이용한 적대적 공격 유형 분류 방안)

  • Choi, Seok-Hwan;Kim, Hyeong-Geon;Choi, Yoon-Ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1215-1225
    • /
    • 2021
  • Although Artificial Intelligence (AI) techniques have shown impressive performance in various fields, they are vulnerable to adversarial examples which induce misclassification by adding human-imperceptible perturbations to the input. Previous studies to defend the adversarial examples can be classified into three categories: (1) model retraining methods; (2) input transformation methods; and (3) adversarial examples detection methods. However, even though the defense methods against adversarial examples have constantly been proposed, there is no research to classify the type of adversarial attack. In this paper, we proposed an adversarial attack family classification method based on dimensionality reduction and clustering. Specifically, after extracting adversarial perturbation from adversarial example, we performed Linear Discriminant Analysis (LDA) to reduce the dimensionality of adversarial perturbation and performed K-means algorithm to classify the type of adversarial attack family. From the experimental results using MNIST dataset and CIFAR-10 dataset, we show that the proposed method can efficiently classify five tyeps of adversarial attack(FGSM, BIM, PGD, DeepFool, C&W). We also show that the proposed method provides good classification performance even in a situation where the legitimate input to the adversarial example is unknown.