DOI QR코드

DOI QR Code

An enhanced analytical calculation model based on sectional calculation using a 3D contour map of aerodynamic damping for vortex induced vibrations of wind turbine towers

  • Dimitrios Livanos (Siemens Gamesa Renewable Energy B.V.) ;
  • Ika Kurniawati (Department of Wind Engineering and Fluid Mechanics, Ruhr-Universitat Bochum) ;
  • Marc Seidel (Siemens Gamesa Renewable Energy GmbH & Co. KG) ;
  • Joris Daamen (Siemens Gamesa Renewable Energy B.V.) ;
  • Frits Wenneker (Siemens Gamesa Renewable Energy B.V.) ;
  • Francesca Lupi (Niemann Ingenieure GbR) ;
  • Rudiger Hoffer (Department of Wind Engineering and Fluid Mechanics, Ruhr-Universitat Bochum)
  • Received : 2023.12.08
  • Accepted : 2024.03.05
  • Published : 2024.06.25

Abstract

To model the aeroelasticity in vortex-induced vibrations (VIV) of slender tubular towers, this paper presents an approach where the aerodynamic damping distribution along the height of the structure is calculated not only as a function of the normalized lateral oscillation but also considering the local incoming wind velocity ratio to the critical velocity (velocity ratio). The three-dimensionality of aerodynamic damping depending on the tower's displacement and the velocity ratio has been observed in recent studies. A contour map model of aerodynamic damping is generated based on the forced vibration tests. A sectional calculation procedure based on the spectral method is developed by defining the aerodynamic damping locally at each increment of height. The proposed contour map model of aerodynamic damping and the sectional calculation procedure are validated with full-scale measurement data sets of a rotorless wind turbine tower, where good agreement between the prediction and measured values is obtained. The prediction of cross-wind response of the wind turbine tower is performed over a range of wind speeds which allows the estimation of resulting fatigue damage. The proposed model gives more realistic prediction in comparison to the approach included in current standards.

Keywords

Acknowledgement

The authors would like to thank Andrei Metrikine, Hayo Hendrikse and Pim van der Male from Delft University of Technology for supervising the MSc Thesis of the first author, which led to this publication. Additionally, the authors would like to thank Prof. Hans-Jurgen Niemann for his advice on the handling of the full-scale measurement data. The authors are also grateful for the support of CICIND (International Committee for Industrial Construction) for the support through the research project "Reynolds number disparity and its effect on vortex excitation - Insight from full-scale tests at wind turbine towers" and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) for the support through the projects Nr. 493357786.

References

  1. Arunachalam, S. and Lakshmanan, N. (2020), "Non-linear modelling of vortex induced lock-in effects on circular chimneys", J. Wind Eng. Ind. Aerod., 202, 104201. https://doi.org/10.1016/j.jweia.2020.104201.
  2. Basu, R. and Vickery, B. (1983), "Across-wind vibrations of structure of circular cross-section. Part II. Development of a mathematical model for full-scale application", J. Wind Eng. Ind. Aerod., 12(1), 75-97. https://doi.org/10.1016/0167-6105(83)90081-8.
  3. Basu, R.I. (1982), Across-Wind Response of Slender Structures of Circular Cross-Section to Atmospheric Turbulence, PhD Thesis, The University of Western Ontario, https://ir.lib.uwo.ca/digitizedtheses/1233
  4. Bishop, R.E.D. and Hassan, A.Y. (1964), "The lift and drag forces on a circular cylinder oscillating in a flowing fluid", Proc. R. Soc. Lond. A, 277, 51-75. https://doi.org/10.1098/rspa.1964.0005.
  5. Chen, X. (2014), "Extreme value distribution and peak factor of crosswind response of flexible structures with nonlinear aeroelastic effect", J. Struct. Eng., 140(12), 04014091. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001017.
  6. Cheung, J. and Melbourne, W. (1983), Aerodynamic Damping of a Circular Cylinder in Turbulent Flow at High Reynolds Numbers. 5-8.
  7. CICIND (2011). Commentaries for Model Code for Concrete Chimneys.
  8. Dyrbye, C. and Hansen, S.O. (1996). Wind Loads on Structures. John Wiley and Sons.
  9. Ehsan, F. and Scanlan, R.H. (1990), "Vortex-induced vibrations of flexible bridges", J. Eng. Mech., 116(6), 1392-1411. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:6(1392).
  10. Ellingsen, O. and Hemon, P. (2021). Vortex-induced vibrations on industrial chimneys, Effet de l'excitation des structures cylindriques par les tourbillons alternes: Modelisation de l'amplitude pour les codes de construction (Issue 2021IPPAX061) [Institut Polytechnique de Paris]. https://theses.hal.science/tel-03483512
  11. EN 1991-1-4:2005 (2005). Eurocode 1: Actions on Structures - Part 1-4: General Actions - Wind Actions. CEN. https://doi.org/ICS 91.010.30; 93.040
  12. EN 1993-1-9 (2005), Eurocode 3: Design of Steel Structures, Part 1-9: Fatigue. In Eurocode 3: Design of Steel Structures, Part 1-9: Fatigue. CEN. https://doi.org/10.1016/0169-2607(95)01640-F
  13. Facchinetti, M.L., Langre, E. and de, Biolley, F. (2004), "Coupling of structure and wake oscillators in vortex-induced vibrations", J. Fluids Struct., 19(2), 123-140. https://doi.org/10.1016/j.jfluidstructs.2003.12.004.
  14. Gopalkrishnan, R. (1993), Vortex-Induced Forces on Oscillating Bluff Cylinders. Massachusetts Institute of Technology, Dept. of Ocean Engineering.
  15. Guo, K., Yang, Q., Liu, M. and Li, B. (2021), "Aerodynamic damping model for vortex-induced vibration of suspended circular cylinder in uniform flow", J. Wind Eng. Ind. Aerod., 209, 104497. https://doi.org/10.1016/j.jweia.2020.104497.
  16. Hansen, S.O. (2007), "Vortex-induced vibrations of structures", Structural Engineers World Congress 2007. Bangalore, India.
  17. Hoffer, R., Kurniawati, I., Lupi, F., Seidel, M. And Niemann, H.-J. (2022), „Full-scale tests on wind turbine towers: Towards a realistic prediction of vortex-induced vibrations", CICIND Report 97th Conference in Paphos.
  18. Hover, F.S., Techet, A.H. and Triantafyllou, M.S. (1998), "Forces on oscillating uniform and tapered cylinders in crossflow", J. Fluid Mech., 363, 97-114. https://doi.org/10.1017/S0022112098001074.
  19. Kurniawati, I., Lupi, F., Seidel, M., Hoffer, R. and Niemann, H.-J. (2022), "Insights into the transcritical Reynolds number range based on field measurement of a wind turbine twer", Proceedings of the XVII Conference of the Italian Association for Wind Engineering.
  20. Kurniawati, I., Lupi, F., Seidel, M., Hoffer, R. and Niemann, H.-J. (2023), Field Measurement Data Set of Wind Turbine Tower for Enhanced Calculation of Vortex-Induced Vibration", XII International Conference on Structural Dy-namics (EURODYN 2023), Delft.
  21. Lupi, F., Hoffer, R. and Niemann, H.-J. (2020), "Fatigue life estimation considering the quasi-periodic cross-wind response of slender structures in the lock-in range", EASD Conferences EURODYN 2020 XI International Conference on Structural Dynamics.
  22. Lupi, F., Niemann, H.-J. And Hoffer, R. (2018), „Aerodynamic damping model in vortex-induced vibrations for wind engineering applications", J. Wind Eng. Ind. Aerod., 174, 281-295.
  23. Lupi, F., Niemann, H.J. and Hoffer, R. (2017), "A novel spectral method for cross-wind vibrations: Application to 27 full-scale chimneys", J. Wind Eng. Ind. Aerod., 171(October), 353-365. https://doi.org/10.1016/j.jweia.2017.10.014.
  24. Manolas, D.I., Chaviaropoulos, P.K. and Riziotis, V.A. (2022), "Assessment of vortex induced vibrations on wind turbines", J. Phys. Conference Series, 2257(1), 012011. https://doi.org/10.1088/1742-6596/2257/1/012011.
  25. prEN 1991-1-4:2024-03 (E). (2023), Eurocode 1: Actions on Structures-Part 1-4: General Actions-Wind Actions.
  26. Preumont, A. (1985), "On the peak factor of stationary Gaussian processes", J. Sound Vib., 100(1), 15-34.
  27. Ruscheweyh, H. (1986), Ein verfeinertes, praxisnahes Berechnungsverfahren wirbelerregter Schwingungen von schlanken Baukonstruktionen im Wind. Innsbruck Lausanne. https://books.google.de/books?id=fmbptAEACAAJ
  28. Ruscheweyh, H. and Sedlacek, G. (1988), "Crosswind vibrations of steel stacks. - Critical comparison between some recently proposed codes", J. Wind Eng. Ind. Aerod., 30(1-3), 173-183. https://doi.org/10.1016/0167-6105(88)90082-7.
  29. Scruton, C. (1963), "On the wind excited oscillations of stacks, towers and masts", Proc. Int. Conf. Wind Effects on Buildings and Structures (Teddington), 798-833.
  30. Seidel, M. (2014), "Wave induced fatigue loads: Insights from frequency domain calculations", Stahlbau, 83(8), 535-541.
  31. Vanmarcke, E.H. (1972), "Properties of spectral moments with applications to random vibration", J. Eng. Mech. Div., 98(2), 425-446. https://doi.org/10.1061/JMCEA3.0001593.
  32. Verboom, G.K. and van Koten, H. (2010), "Vortex excitation: Three design rules tested on 13 industrial chimneys", J. Wind Eng. Ind. Aerod., 98(3), 145-154. https://doi.org/10.1016/j.jweia.2009.10.008.
  33. Vickery, B. and Basu, R. (1983), "Across-wind vibrations of structures of circular cross-section. Part I. Development of a mathematical model for two-dimensional conditions", J. Wind Eng. Ind. Aerod., 12(1), 49-73. https://doi.org/10.1016/0167-6105(83)90080-6.
  34. Vickery, B.J. and Clark, A.W. (1972), "Lift or across-wind response to tapered stacks", J. Struct. Div., 98(1), 1-20.