References
- Acharya UR, Faust O, Sree SV, et al (2012). ThyroScreen system: high resolution ultrasound thyroid image characterization into benign and malignant classes using novel combination of texture and discrete wavelet transform. Comput Methods Programs Biomed, 107, 233-41. https://doi.org/10.1016/j.cmpb.2011.10.001
- Alzubi S, Islam N, Abbod M (2011). Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation. Int J Biomed Imaging, 2011, 136034.
- Arebey M, Hannan MA, Begum RA, et al (2012). Solid waste bin level detection using gray level co-occurrence matrix feature extraction approach. J Environ Manage, 104, 9-18. https://doi.org/10.1016/j.jenvman.2012.03.035
- Beadsmoore CJ, Screaton NJ (2003). Classification, staging and prognosis of lung cancer. Eur J Radiol, 45, 8-17. https://doi.org/10.1016/S0720-048X(02)00287-5
- Borrajo L, Romero R, Iglesias EL, et al (2011). Improving imbalanced scientific text classification using sampling strategies and dictionaries. J Integr Bioinform, 8, 176.
- Dettori L, Semler L (2007). A comparison of wavelet, ridgelet, and curvelet-based texture classification algorithms in computed tomography. Comput Biol Med, 37, 486-98. https://doi.org/10.1016/j.compbiomed.2006.08.002
- Dua S., Acharya UR, Chowriappa P, et al (2012). Wavelet-based energy features for glaucomatous image classification. IEEE Trans Inf Technol Biomed, 16, 80-7. https://doi.org/10.1109/TITB.2011.2176540
- Eltoukhy MM, Faye I, Samir BB (2010). Breast cancer diagnosis in digital mammogram using multiscale curvelet transform. Comput Med Imaging Graph, 34, 269-76. https://doi.org/10.1016/j.compmedimag.2009.11.002
- Erasmus JJ, Connolly JE., McAdams HP, et al (2000). Solitary pulmonary nodules: Part I. Morphologic evaluation for differentiation of benign and malignant lesions. Radiographics, 20, 43-58. https://doi.org/10.1148/radiographics.20.1.g00ja0343
- Gould MK, Ananth L, Barnett PG (2007). A clinical model to estimate the pretest probability of lung cancer in patients with solitary pulmonary nodules. Chest, 131, 383-8. https://doi.org/10.1378/chest.06-1261
- Guo L, Dai M, Zhu M (2012). Multifocus color image fusion based on quaternion curvelet transform. Opt Express, 20, 18846-60. https://doi.org/10.1364/OE.20.018846
- Gurney JW (1993). Determining the likelihood of malignancy in solitary pulmonary nodules with Bayesian analysis. Part I. Theory. Radiology, 186, 405-13. https://doi.org/10.1148/radiology.186.2.8421743
- Hart J (2011). Lung cancer in Oregon. Dose Response, 9, 410-5. https://doi.org/10.2203/dose-response.10-005.Hart
- Henschke CI, Yankelevitz DF, Mateescu I, et al (1997). Neural networks for the analysis of small pulmonary nodules. Clin Imaging 21, 390-9. https://doi.org/10.1016/S0899-7071(97)81731-7
- Herder GJ, van Tinteren H, Golding RP, et al (2005). Clinical prediction model to characterize pulmonary nodules: validation and added value of 18F-fluorodeoxyglucose positron emission tomography. Chest, 128, 2490-6. https://doi.org/10.1378/chest.128.4.2490
- Khan A, Herman PG, Vorwerk P, et al (1991). Solitary pulmonary nodules: comparison of classification with standard, thin-section, and reference phantom CT. Radiology, 179, 477-81. https://doi.org/10.1148/radiology.179.2.2014295
- Khorasani A, Daliri MR (2013). Estimation of neural firing rate: the wavelet density estimation approach. Biomed Tech (Berl), 58, 377-86.
- Ko JP, Berman EJ, Kaur M, et al (2012). Pulmonary Nodules: growth rate assessment in patients by using serial CT and three-dimensional volumetry. Radiology, 262, 662-71. https://doi.org/10.1148/radiol.11100878
- Li Y, Chen KZ, Wang J (2011). Development and validation of a clinical prediction model to estimate the probability of malignancy in solitary pulmonary nodules in Chinese people. Clin Lung Cancer, 12, 313-9. https://doi.org/10.1016/j.cllc.2011.06.005
- Ma X, Zhang Z, Hu Y, et al (2012). Combined surgical intervention treatments for lung cancer and coronary heart disease patients. Zhongguo Fei Ai Za Zhi, 15, 602-5.
- Matsuki Y, Nakamura K, Watanabe H, et al (2002). Usefulness of an artificial neural network for differentiating benign from malignant pulmonary nodules on high-resolution CT: evaluation with receiver operating characteristic analysis. AJR Am J Roentgenol, 178, 657-63. https://doi.org/10.2214/ajr.178.3.1780657
- Meselhy Eltoukhy M, Faye I, Belhaouari Samir B (2010). A comparison of wavelet and curvelet for breast cancer diagnosis in digital mammogram. Comput Biol Med, 40, 384-91. https://doi.org/10.1016/j.compbiomed.2010.02.002
- Nakamura K., Yoshida H, Engelmann R, et al (2000). Computerized analysis of the likelihood of malignancy in solitary pulmonary nodules with use of artificial neural networks. Radiology, 214, 823-30. https://doi.org/10.1148/radiology.214.3.r00mr22823
- Schultz EM, Sanders GD, Trotter PR, et al (2008). Validation of two models to estimate the probability of malignancy in patients with solitary pulmonary nodules. Thorax, 63, 335-41. https://doi.org/10.1136/thx.2007.084731
- Soerjomataram I, Lortet-Tieulent J, Parkin DM, et al (2012). Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. Lancet 380, 1840-50. https://doi.org/10.1016/S0140-6736(12)60919-2
- Sun T, Wang J, Li X, et al (2013a). Comparative evaluation of support vector machines for computer aided diagnosis of lung cancer in CT based on a multi-dimensional data set. Comput Methods Programs Biomed.
- Sun T, Zhang R, Wang J, et al (2013b). Computer-aided diagnosis for early-stage lung cancer based on longitudinal and balanced data. PLoS One, 8, e63559. https://doi.org/10.1371/journal.pone.0063559
- Swensen SJ, Silverstein MD, Ilstrup DM, et al (1997). The probability of malignancy in solitary pulmonary nodules. Application to small radiologically indeterminate nodules. Arch Intern Med, 157, 849-55. https://doi.org/10.1001/archinte.1997.00440290031002
- Wang H, Guo XH, Jia ZW, et al (2010). Multilevel binomial logistic prediction model for malignant pulmonary nodules based on texture features of CT image. Eur J Radiol, 74, 124-9. https://doi.org/10.1016/j.ejrad.2009.01.024
- Way TW, Sahiner B, Chan HP, et al (2009). Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features. Med Phys, 36, 3086-98. https://doi.org/10.1118/1.3140589
- Wu H, Sun T, Wang J, et al (2013). Combination of radiological and gray level co-occurrence matrix textural features used to distinguish solitary pulmonary nodules by computed tomography. J Digit Imaging, 26, 797-802. https://doi.org/10.1007/s10278-012-9547-6
- Zhu L, Gao Y, Appia V, et al (2013). Automatic Delineation of the Myocardial Wall from CT Images via Shape Segmentation and Variational Region Growing. IEEE Trans Biomed Eng, 60, 2887-95. https://doi.org/10.1109/TBME.2013.2266118
Cited by
- Contourlet Textual Features: Improving the Diagnosis of Solitary Pulmonary Nodules in Two Dimensional CT Images vol.9, pp.9, 2014, https://doi.org/10.1371/journal.pone.0108465
- Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine vol.14, pp.1, 2015, https://doi.org/10.1186/s12938-015-0003-y
- Evaluation of Machine Learning Algorithm Utilization for Lung Cancer Classification Based on Gene Expression Levels vol.17, pp.2, 2016, https://doi.org/10.7314/APJCP.2016.17.2.835
- Effects of contrast-enhancement, reconstruction slice thickness and convolution kernel on the diagnostic performance of radiomics signature in solitary pulmonary nodule vol.6, pp.1, 2016, https://doi.org/10.1038/srep34921