• Title/Summary/Keyword: three-dimensional elasticity

Search Result 166, Processing Time 0.019 seconds

Three-dimensional vibration analysis of 3D graphene foam curved panels on elastic foundations

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Khajehzadeh, Mohammad;Yousif, Mariwan Araz;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.91-106
    • /
    • 2022
  • This paper has focused on presenting a three dimensional theory of elasticity for free vibration of 3D-graphene foam reinforced polymer matrix composites (GrF-PMC) cylindrical panels resting on two-parameter elastic foundations. The elastic foundation is considered as a Pasternak model with adding a Shear layer to the Winkler model. The porous graphene foams possessing 3D scaffold structures have been introduced into polymers for enhancing the overall stiffness of the composite structure. Also, 3D graphene foams can distribute uniformly or non-uniformly in the shell thickness direction. The effective Young's modulus, mass density and Poisson's ratio are predicted by the rule of mixture. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. The fast rate of convergence and accuracy of the method are investigated through the different solved examples. Because of using two-dimensional generalized differential quadrature method, the present approach makes possible vibration analysis of cylindrical panels with two opposite axial edges simply supported and arbitrary boundary at the curved edges. It is explicated that 3D-GrF skeleton type and weight fraction can significantly affect the vibrational characteristics of GrF-PMC panel resting on two-parameter elastic foundations.

Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.27 no.2
    • /
    • pp.201-216
    • /
    • 2018
  • In this paper, three-dimensional (3D) elasticity theory in conjunction with nonlocal strain gradient theory (NSGT) is developed for mechanical analysis of anisotropic nanoparticles. The present model incorporates two scale coefficients to examine the mechanical characteristics much accurately. All the elastic constants are considered and assumed to be the functions of (r, ${\theta}$, ${\varphi}$), so all kind of anisotropic structures can be modeled. Moreover, all types of functionally graded spherical structures can be investigated. To justify our model, our results for the radial vibration of spherical nanoparticles are compared with experimental results available in the literature and great agreement is achieved. Next, several examples of the radial vibration and wave propagation in spherical nanoparticles including nonlocal strain gradient parameters are presented for more than 10 different anisotropic nanoparticles. From the best knowledge of authors, it is the first time that 3D elasticity theory and NSGT are used together with no approximation to derive the governing equations in the spherical coordinate. Moreover, up to now, the NSGT has not been used for spherical anisotropic nanoparticles. It is also the first time that all the 36 elastic constants as functions of (r, ${\theta}$, ${\varphi}$) are considered for anisotropic and functionally graded nanostructures including size effects. According to the lack of any common approximations in the displacement field or in elastic constant, present theory can be assumed as a benchmark for future works.

Stress Analysis at an Impact Loading Point of Finite Plates according to the dimensions of Impact Loading Parameter (충격하중계수의 크기에 따른 유한평판의 충격하중 작용점에서의 응력해석)

  • 김지훈;심재기;양인영
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.1
    • /
    • pp.46-52
    • /
    • 1996
  • In this paper, an analytical method is proposed to find the dimensions of impact stresses with using the dimensions of impact loading parameter regardless of mass of impactor, velocity of impactor, and plate thickness. In analytical method of Impulsive stresses, the three-dimensional dynamic theory of elasticity using rectangular coordinates and the potential theory of displacement are utilized, and when the measurement of Impact loading is difficult especially for a steel ball colliding on an infinite plate, the impact loading can be obtained by using the classical plate theory and Hertz’s contact theory. And in the numerical analysis, the fast Fourier transform (F. F. T.) algorithm and the numerical inverse Laplace transformation are used because the analysis of impact loading Is difficult to obtain solutions by using the thress-dimensional dynamic theory of elasticity.

  • PDF

Vibration analysis of damaged core laminated curved panels with functionally graded sheets and finite length

  • Zhao, Li-Cai;Chen, Shi-Shuenn;Xu, Yi-Peng;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.38 no.5
    • /
    • pp.477-496
    • /
    • 2021
  • The main objective of this paper is to study vibration of sandwich open cylindrical panel with damaged core and FG face sheets based on three-dimensional theory of elasticity. The structures are made of a damaged isotropic core and two external face sheets. These skins are strengthened at the nanoscale level by randomly oriented Carbon nanotubes (CNTs) and are reinforced at the microscale stage by oriented straight fibers. These reinforcing phases are included in a polymer matrix and a three-phase approach based on the Eshelby-Mori-Tanaka scheme and on the Halpin-Tsai approach, which is developed to compute the overall mechanical properties of the composite material. Three complicated equations of motion for the panel under consideration are semi-analytically solved by using 2-D differential quadrature method. Several parametric analyses are carried out to investigate the mechanical behavior of these multi-layered structures depending on the damage features, through-the-thickness distribution and boundary conditions. It is seen that for the large amount of power-law index "P", increasing this parameter does not have significant effect on the non-dimensional natural frequency parameters of the FG sandwich curved panel. Results indicate that by increasing the value of isotropic damage parameter "D" up to the unity (fully damaged core) the frequency would tend to become zero. One can dictate the fiber variation profile through the radial direction of the sandwich panel via the amount of "P", "b" and "c" parameters. It should be noticed that with increase of volume fraction of fibers, the frequency parameter of the panels does not increase necessarily, so by considering suitable amounts of power-law index "P" and the parameters "b" and "c", one can get dynamic characteristics similar or better than the isotropic limit case for laminated FG curved panels.

Free vibration analysis of moderately-thick and thick toroidal shells

  • Wang, X.H.;Redekop, D.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.449-463
    • /
    • 2011
  • A free vibration analysis is made of a moderately-thick toroidal shell based on a shear deformation (Timoshenko-Mindlin) shell theory. This work represents an extension of earlier work by the authors which was based on a thin (Kirchoff-Love) shell theory. The analysis uses a modal approach in the circumferential direction, and numerical results are found using the differential quadrature method (DQM). The analysis is first developed for a shell of revolution of arbitrary meridian, and then specialized to a complete circular toroidal shell. A second analysis, based on the three-dimensional theory of elasticity, is presented to cover thick shells. The shear deformation theory is validated by comparing calculated results with previously published results for fifteen cases, found using thin shell theory, moderately-thick shell theory, and the theory of elasticity. Consistent agreement is observed in the comparison of different results. New frequency results are then given for moderately-thick and thick toroidal shells, considered to be completely free. The results indicate the usefulness of the shear deformation theory in determining natural frequencies for toroidal shells.

충격하중을 받는 유한평판의 3차원 동탄성이론에 의한 응력해석

  • 양인영;김선규;박정수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.51-64
    • /
    • 1991
  • In this paper, an attempt is made to analyze the impulsive stress directly underneath the concentrated impact point for a supported square plate by using the three-dimensional dynamic theory of elasticity and the potential theory of displacement (stress function) on the supposition that the load, F$_{*}$0 sin .omega.t, acted on the central part of it. The results obtained from this study are as follows: 1. The impulsive stress cannot be analyzed directly underneath the acting point of concenrated impact load in privious theories, but can be analyzed by using the three-dimensional dynamic theory of elasticity and the potential theory of displacement. 2. Theorically, with increasing the pulse width of applied load, it was possible to clarify that the amount of stress in the point of concentrated impact load was increased and that of stress per unit impulse was decreased. 3. The numerical inversion of laplace transformation by the use of the F.F.T algorithm contributes the reduction of C.P.U time and the improvement of the accuracy or results. 4. In this paper recommended, it is found that the approximate equation of impact load function P (.tau.) = A.tau. exp (-B.tau.), and P (.tau.) =0.85A exp (-B.tau.) sinC.tau. could actually apply to all impact problem. In compared with the experimental results, the propriety of the analytical method is reasonable.

  • PDF

Can finite element and closed-form solutions for laterally loaded piles be identical?

  • Sawant, Vishwas A.;Shukla, Sanjay Kumar
    • Structural Engineering and Mechanics
    • /
    • v.43 no.2
    • /
    • pp.239-251
    • /
    • 2012
  • The analysis of laterally loaded piles is generally carried out by idealizing the soil mass as Winkler springs, which is a crude approximation; however this approach gives reasonable results for many practical applications. For more precise analysis, the three- dimensional finite element analysis (FEA) is one of the best alternatives. The FEA uses the modulus of elasticity $E_s$ of soil, which can be determined in the laboratory by conducting suitable laboratory tests on undisturbed soil samples. Because of the different concepts and idealizations in these two approaches, the results are expected to vary significantly. In order to investigate this fact in detail, three-dimensional finite element analyses were carried out using different combinations of soil and pile characteristics. The FE results related to the pile deflections are compared with the closed-form solutions in which the modulus of subgrade reaction $k_s$ is evaluated using the well-known $k_s-E_s$ relationship. In view of the observed discrepancy between the FE results and the closed-form solutions, an improved relationship between the modulus of subgrade reaction and the elastic constants is proposed, so that the solutions from the closed-form equations and the FEA can be closer to each other.

Three-dimensional analysis of the natural vibration of the three-layered hollow sphere with middle layer made of FGM

  • Akbarov, Surkay D.;Guliyev, Hatam H.;Yahnioglu, Nazmiye
    • Structural Engineering and Mechanics
    • /
    • v.61 no.5
    • /
    • pp.563-576
    • /
    • 2017
  • This paper is a continuation of the investigations started in the paper by Akbarov, S.D., Guliyev, H.H and Yahnioglu, N. (2016) "Natural vibration of the three-layered solid sphere with middle layer made of FGM: three-dimensional approach", Structural Engineering and Mechanics, 57(2), 239-263, to the case where the three-layered sphere is a hollow one. Three-dimensional exact field equations of elastodynamics are employed for investigation and the discrete-analytical method is employed for solution of the corresponding eigenvalue problem. The FGM is modelled as inhomogeneous for which the modulus of elasticity, Poison's ratio and density vary continuously through the inward radial direction according to power law distribution. Numerical results on the natural frequencies are presented and discussed. These results are also compared with the corresponding ones obtained in the previous paper by the authors. In particular, it is established that for certain harmonics and for roots of certain order, the values of the natural frequency obtained for the hollow sphere can be greater (or less) than those obtained for the solid sphere.

GENERALIZED THERMO ELASTIC WAVES IN A CYLINDRICAL PANEL EMBEDDED ON ELASTIC MEDIUM

  • Ponnusamy, P.;Selvamani, R.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.1-15
    • /
    • 2013
  • In this paper the three dimensional wave propagation in a homogeneous isotropic thermo elastic cylindrical panel embedded in an elastic medium (Winkler model) is investigated in the context of the L-S (Lord-Shulman) theory of generalized thermo elasticity. The analysis is carried out by introducing three displacement functions so that the equations of motion are uncoupled and simplified. A Bessel function solution with complex arguments is then directly used for the case of complex Eigen values. This type of study is important for design of structures in atomic reactors, steam turbines, wave loading on submarine, the impact loading due to superfast train and jets and other devices operating at elevated temperature. In order to illustrate theoretical development, numerical solutions are obtained and presented graphically for a zinc material with the support of MATLAB.

Discrete-Layer Model for Prediction of Free Edge Stresses in Laminated Composite Plates

  • Ahn, Jae-Seok;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.615-626
    • /
    • 2010
  • The discrete-layer model is proposed to analyze the edge-effect problem of laminates under extension and flexure. Based on three-dimensional elasticity theory, the displacement fields of each layer in a laminate have been treated discretely in terms of three displacement components across the thickness. The displacement fields at bottom and top surfaces within a layer are approximated by two-dimensional shape functions. Then two surfaces are connected by one-dimensional high order shape functions. Thus the p-convergent refinement on approximated one- and two-dimensional shape functions can be implemented independently of each other. The quality of present model is mostly determined by polynomial degrees of shape functions for given displacement fields. For nodal modes with physical meaning, the linear Lagrangian polynomials are considered. Additional modes without physical meaning, which are created by increasing nodeless degrees of shape functions, are derived from integrals of Legendre polynomials which have an orthogonality property. Also, it is assumed that mapping functions are linear in the light of shape of laminated plates. The results obtained by this proposed model are compared with those available in literatures. Especially, three-dimensional out-of-plane stresses in the interior and near the free edges are evaluated and convergence performance of the present model is established with the stress results.