Acknowledgement
Supported by : Shantou University
References
- Artioli, E., Gould, P.L. and Viola, E. (2005), "A differential quadrature method solution for shear-deformable shells of revolution", Eng. Struct., 27, 1879-1892. https://doi.org/10.1016/j.engstruct.2005.06.005
- Artioli, E. and Viola, E. (2006), "Free vibration analysis of spherical caps using a GDQ numerical solution", ASME J. Press Vessel Technol., 128, 370-378. https://doi.org/10.1115/1.2217970
- Balderes, T. and Armenakas, A.E. (1973), "Free vibrations of ring-stiffened toroidal shells", AIAA J., 11(2), 1637-1644. https://doi.org/10.2514/3.50662
- Bert, C.W. and Malik, M. (1996), "Free vibration analysis of thin cylindrical shells by the differential quadrature method", ASME J. Press Vessel Technol., 118, 1-12. https://doi.org/10.1115/1.2842156
- Buchanan, G.R. and Liu, Y.J. (2005), "An analysis of the free vibration of thick-walled isotropic toroidal shells", Int. J. Mech. Sci., 47, 277-292. https://doi.org/10.1016/j.ijmecsci.2004.12.004
- Jiang, W. and Redekop, D. (2002), "Polar axisymmetric vibration of a hollow toroid using the differential quadrature method", J. Sound Vib., 251(4), 761-765. https://doi.org/10.1006/jsvi.2001.3865
- Kosawada, T., Suzuki, K. and Takahashi, K.S. (1985), "Free vibrations of toroidal shells", Bull. JSME, 28(243), 2041-2047. https://doi.org/10.1299/jsme1958.28.2041
- Kosawada, T., Suzuki, K. and Takahashi, S. (1986), "Free vibrations of thick toroidal shells", Bull. JSME, 29(255), 3036-3042. https://doi.org/10.1299/jsme1958.29.3036
- Leung, A.Y.T. and Kwok, N.T.C. (1994), "Free vibration analysis of a toroidal shell", Thin Wall. Struct., 18, 317-332. https://doi.org/10.1016/0263-8231(94)90008-6
- McGill, D.F. and Lenzen, K.H. (1967), "Polar axisymmetric free oscillations of thick hollowed tori", SIAM J. Appl. Math., 15(3), 679-692.
- Redekop, D. (1992), "A displacement approach to the theory of toroidal elasticity", Int. J. Pres Ves Pip., 51(2), 189-209. https://doi.org/10.1016/0308-0161(92)90080-Y
- Shu, C. (2000), Differential Quadrature and Its Application in Engineering, Springer-Verlag, Berlin.
- Soedel, W. (1982), "On the vibration of shells with Timoshenko-Mindlin type shear deflections and rotary inertia", J. Sound Vib., 83(1), 67-79. https://doi.org/10.1016/S0022-460X(82)80076-X
- Soedel, W. (2004), Vibration of Shells and Plates, 3rd. Edition, Marcell Decker, New York.
- Wang, X.H. and Redekop, D. (2005), "Natural frequencies and mode shapes of an orthotropic thin shell of revolution", Thin Wall. Struct., 43, 735-750. https://doi.org/10.1016/j.tws.2004.12.001
- Wang, X.H., Xu, B. and Redekop, D. (2006), "Theoretical natural frequencies and mode shapes for thin and thick curved pipes and toroidal shells", J. Sound Vib., 292, 424-434. https://doi.org/10.1016/j.jsv.2005.07.049
Cited by
- Stiffened orthotropic corner supported hypar shells: Effect of stiffener location, rise/span ratio and fiber orientaton on vibration behavior vol.12, pp.4, 2012, https://doi.org/10.12989/scs.2012.12.4.275
- A free vibration analysis of toroidal composite shells in free space vol.337, 2015, https://doi.org/10.1016/j.jsv.2014.10.015
- Buckling of thick deep laminated composite shell of revolution under follower forces vol.58, pp.1, 2016, https://doi.org/10.12989/sem.2016.58.1.059
- A review of toroidal composite pressure vessel optimisation and damage tolerant design for high pressure gaseous fuel storage vol.41, pp.47, 2016, https://doi.org/10.1016/j.ijhydene.2016.10.039