• 제목/요약/키워드: three phase ratio

검색결과 493건 처리시간 0.033초

Hydrogen Absorption by Crystalline Semiconductors: Si(100), (110) and (111)

  • 정민복;조삼근
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.383-383
    • /
    • 2010
  • Gas-phase hydrogen atoms create a variety of chemical and physical phenomena on Si surfaces: adsorption, abstraction of pre-adsorbed H, Si etching, Si amorphization, and penetration into the bulk lattice. Thermal desorption/evolution analyses exhibited three distinct peaks, including one from the crystalline bulk. It was previously found that thermal-energy gaseous H(g) atoms penetrate into the Si(100) crystalline bulk within a narrow substrate temperature window(centered at ~460K) and remain trapped in the bulk lattice before evolving out at a temperature as high as ~900K. Developing and sustaining atomic-scale surface roughness, by H-induced silicon etching, is a prerequisite for H absorption and determines the $T_s$ windows. Issues on the H(g) absorption to be further clarified are: (1) the role of the detailed atomic surface structure, together with other experimental conditions, (2) the particular physical lattice sites occupied by, and (3) the chemical nature of, absorbed H(g) atoms. This work has investigated and compared the thermal H(g) atom absorptivity of Si(100), Si(111) and Si(110) samples in detail by using the temperature programmed desorption mass spectrometry (TPD-MS). Due to the differences in the atomic structures of, and in the facility of creating atom-scale etch pits on, Si(100), (100) and (110) surfaces, the H-absorption efficiency was found to be larger in the order of Si(100) > Si(111) > Si(110) with a relative ratio of 1 : 0.22 : 0.045. This intriguing result was interpreted in terms of the atomic-scale surface roughening and kinetic competition among H(g) adsorption, H(a)-by-H(g) abstraction, $SiH_3(a)$-by-H(g) etching, and H(g) penetraion into the crystalline silicon bulk.

  • PDF

T1-Based MR Temperature Monitoring with RF Field Change Correction at 7.0T

  • Kim, Jong-Min;Lee, Chulhyun;Hong, Seong-Dae;Kim, Jeong-Hee;Sun, Kyung;Oh, Chang-Hyun
    • Investigative Magnetic Resonance Imaging
    • /
    • 제22권4호
    • /
    • pp.218-228
    • /
    • 2018
  • Purpose: The objective of this study is to determine the effect of physical changes on MR temperature imaging at 7.0T and to examine proton-resonance-frequency related changes of MR phase images and T1 related changes of MR magnitude images, which are obtained for MR thermometry at various magnetic field strengths. Materials and Methods: An MR-compatible capacitive-coupled radio-frequency hyperthermia system was implemented for heating a phantom and swine muscle tissue, which can be used for both 7.0T and 3.0T MRI. To determine the effect of flip angle correction on T1-based MR thermometry, proton resonance frequency, apparent T1, actual flip angle, and T1 images were obtained. For this purpose, three types of imaging sequences are used, namely, T1-weighted fast field echo with variable flip angle method, dual repetition time method, and variable flip angle method with radio-frequency field nonuniformity correction. Results: Signal-to-noise ratio of the proton resonance frequency shift-based temperature images obtained at 7.0T was five-fold higher than that at 3.0T. The T1 value increases with increasing temperature at both 3.0T and 7.0T. However, temperature measurement using apparent T1-based MR thermometry results in bias and error because B1 varies with temperature. After correcting for the effect of B1 changes, our experimental results confirmed that the calculated T1 increases with increasing temperature both at 3.0T and 7.0T. Conclusion: This study suggests that the temperature-induced flip angle variations need to be considered for accurate temperature measurements in T1-based MR thermometry.

Broken rice in a fermented total mixed ration improves carcass and marbling quality in fattened beef cattle

  • Kotupan, Salisa;Sommart, Kritapon
    • Animal Bioscience
    • /
    • 제34권8호
    • /
    • pp.1331-1341
    • /
    • 2021
  • Objective: This study aimed to determine the effects of replacing cassava chips with broken rice in a fermented total mixed ration diet on silage quality, feed intake, ruminal fermentation, growth performance, and carcass characteristics in the final phase of fattening beef cattle. Methods: Eighteen Charolais-Thai native crossbred steers (average initial body weight: 609.4±46 kg; average age 31.6 mo) were subjected to three ad libitum dietary regimes and were maintained in individual pens for 90 d before slaughter. The experimental design was a randomized complete block design by initial age and body weight with six replicates. The dietary regimens used different proportions of broken rice (0%, 16%, and 32% [w/w] of dry matter [DM]) instead of cassava chips in a fermented total mixed ration. All dietary treatments were evaluated for in vitro gas production and tested in in vivo feeding trials. Results: The in vitro experiments indicated that organic matter from broken rice was significantly more digestible than that from a cassava-based diet (p<0.05). Silage quality, nutrient intake, ruminal fermentation characteristics, carcass fat thickness, and marbling score substantially differed among treatments. The ruminal total volatile fatty acids, propionate concentration, dietary protein intake, and digestibility increased linearly (p<0.05) with broken rice, whereas acetate concentration and the acetate:propionate ratio decreased linearly (p<0.05) with broken rice (added up to 32 g/kg DM). Broken rice did not influence plasma metabolite levels or growth performance (p>0.05). However, the marbling score increased, and the carcass characteristics improved with broken rice. Conclusion: Substitution of cassava chips with broken rice in beef cattle diets may improve fattened beef carcass quality because broken rice increases rumen fermentation, fatty acid biosynthesis, and metabolic energy supply.

Quality Assessment of GPS L2C Signals and Measurements

  • Yun, Seonghyeon;Lee, Hungkyu
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권1호
    • /
    • pp.13-20
    • /
    • 2021
  • A series of numerical experiments with measurements observed at continuously operating reference stations (CORS) of the international GNSS services (IGS) and the national geographical information institute of Korea (NGII) have been intensively carried out to evaluate the quality of pseudo-ranges and carrier-phases of GPS L2C signal obtained by various receiver types, benign and harsh operational environment. In this analysis, some quality measures, such as signal-to-noise ratio (SNR), the magnitude of multipath, and the number of cycle slips, the pseudo-range and carrier phase obtaining rate were computed and compared. The SNR analysis revealed an impressive result that the trend in the SNR of C/A and the L2C comparably depends upon type of receivers. The result of multipath analysis also showed clearly different tendency depending on the receiver types. The reason for this inconsistent tendency was seemed to be that the different multipath mitigation algorithm built-in each receiver. The number of L2C cycle slip was less than P2(Y), and L2C measurements obtaining rate was higher than that of P2(Y) in three receiver types. In the harsh observational environment, L2C quality was not only superior to P2(Y) in all aspects such as SNR, multipath magnitude, the number of cycle slips, and measurement obtaining rate, but also it could maintain a level of quality equivalent to C/A. According to the results of this analysis, it's expected that improved positioning performance like accuracy and continuity can be got through the use of L2C instead of existing P2(Y).

Fused Deposition Modeling of Iron-alloy using Carrier Composition

  • Harshada R. Chothe;Jin Hwan Lim;Jung Gi Kim;Taekyung Lee;Taehyun Nam;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • 제58권1호
    • /
    • pp.44-56
    • /
    • 2023
  • Additive manufacturing (AM) or three-dimensional (3D) printing of metals has been drawing significant attention due to its reliability, usefulness, and low cost with rapid prototyping. Among the various AM technologies, fused deposition modeling (FDM) or fused filament fabrication is receiving much interest because of its simple manufacturing processing, low material waste, and cost-effective equipment. FDM technology uses metal-filled polymer filaments for 3D printing, followed by debinding and sintering to fabricate complex metal parts. An efficient binder is essential for producing polymer filaments and the thermal post-processing of printed objects. This study involved an in-depth investigation of and a fabrication route for a novel multi-component binder system with steel alloy powder (45 vol.%) ranging from filament fabrication and 3D printing to debinding and sintering. The binder system consisted of polyvinyl pyrrolidone (PVP) as a binder and thermoplastic polyurethane (TPU) and polylactic acid (PLA) as a carrier. The PVP binder held the metal components tightly by maintaining their stoichiometry, and the TPU and PLA in the ratio of 9:1 provided flexibility, stiffness, and strength to the filament for 3D printing. The efficacy of the binder system was examined by fabricating 3D-printed cubic structures. The results revealed that the thermal debinding and sintering processes effectively removed the binder/carrier from the cubic structures, resulting in isotropic shrinkage of approximately 15.8% in all directions. The scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) patterns displayed the microstructure behavior, phase transition, and elemental composition of the 3D cubic structure.

장기간 온도상승이 시설재배 '부지화'의 수체 생장 및 과실 품질에 미치는 영향 (Long-term Elevated Temperature Affects the Growth and Quality of 'Shiranuhi' Mandarin Grown in a Green House)

  • 김미선;문영일;김상숙;좌재호;윤석규;박요섭
    • 한국환경농학회지
    • /
    • 제41권4호
    • /
    • pp.318-327
    • /
    • 2022
  • BACKGROUND: The mean annual temperature of the Korean Peninsula will continue to rise due to global warming. 'Shiranuhi' mandarin-a late-harvest cultivar-is primarily cultivated in plastic greenhouses where high temperatures cannot be directly avoided. Therefore, growth and fruit quality changes under elevated temperatures must be investigated. METHODS AND RESULTS: Elevated temperatures were divided into three groups [2℃ (T-I), 4℃ (T-II), and 6℃ (T-III) above the ambient temperature] during the 2019-2020 season. Mean temperatures were 17.1℃, 18.6℃, and 20.2℃ in T-I, T-II, and T-III, respectively. The bud bursts in T-II and T-III were earlier than that in T-I at 7 days and 11 days, respectibely. And the full blooms in T-II and T-III were earlier than that in T-I at 11 days and 23 days, respectively. Fruit size significantly increased with increased temperature. The citrus color index in the coloring phase markedly differed across treatments. Further, total soluble solid and acid contents markedly changed with temperature rise but the sugar-to-acid ratio did not. Sucrose content tended to decrease with increase in temperature, but citric acid content remained unaffected. CONCLUSION(S): Elevated temperature accelerated plant growth and development but delayed rind color development in 'Shiranuhi' mandarin. Therefore, rise in ambient temperature by >4.6℃ may negatively affect yield and fruit quality.

심근 수축에 있어서 Calcium 이온의 기원에 관한 약리학적 연구 (The Pharmacological Studies on the Origin of Calcium ion in Myocardial Contraction)

  • 고창만;김경환
    • 대한약리학회지
    • /
    • 제30권1호
    • /
    • pp.67-73
    • /
    • 1994
  • Na-Ca 교환은 calcium 이온을, 세포 내외의 Na 이온 농도차에 의해서 형성되는 원동력의 방향에 따라, 세포내로(역방향 Na-Ca 교환), 혹은 세포밖으로(정방향 Na-Ca 교환) 이동시킨다. 그러므로 Na-Ca 교환은 심근 수축 운동의 조절 기전의 하나로 받아 들여지고 있다. 그러나, 세포내의 Na 이온 농도는 항상 세포외의 농도보다 낮으므로, 역방향 Na-Ca 교환의 존재와 아울러 이의 심근 수축에 있어서의 역할 가능성에 대해 많은 연구자들이 회의를 가지고 있는 것이 사실이다. 그러므로 본 연구는 흰쥐의 좌심방을 이용하여, 역방향 Na-Ca 교환의 존재 여부와 그 역할의 존재 가능성을 추구하여 보고자 하였다. 흰쥐의 좌심방은 전기장 자극(0.5msec, supramaximal voltage)으로 수축을 유발하고, 자극 빈도를 안정시 4Hz에서 0.4, 1, 8Hz로 변동시킬때 그 수축 장력에서 특징적인 역 사다리 효과(negative staircase effect)가 나타내었으나, 이때 $^{45}Ca$ 섭취는 저빈도로 갈수록, 또한 고빈도로 갈수록 증가되는 이원적인 증가를 나타내었다 자극 빈도를 4Hz 에서 0.4Hz로 변동시에는 수축 장력이 특징적인 삼단계 변환, 즉 급격히 증가하는 첫단계에 이어 급격하게 감소하는 이단계와 안정되어지는 삼단계로 나타났다. $^{45}Ca$ 섭취도 장력 변동과 같은 양상으로 처음 30초 동안에 현저하게 증가한 후 감소되었다. Na-Ca 억제 약물인 benzamil은 $10^{-5}M$에서부터 $3{\times}10^{-4}M$까지 용량에 비례하여 특히 초기의 장력증가를 봉쇄하였다. Bay K-8644$(3{\times}10^{-5}M)$ 처치는 자극 빈도 감소에 따른 수축력 증가를 현저하게 항진시켰으며, benzamil처치는 이때에도 억압을 나타내었다. Verapamil $3{\times}10^{-5}M$ 전처치시에는 4Hz 자극시의 수축 운동은 완전히 소실시켰으나, 0.4 혹은 1 Hz로 바꿈에 따라 수축 운동이 재현되었다. 이때 $^{45}Ca$ 섭취는 verapamil을 전처치하지 않은 경우보다 현저하게 항진되었다. 이상의 결과로 보아, 흰쥐의 좌심방에서 자극 빈도 감소후에는, 먼저 역방향 Na-Ca 교환에 의해 calcium이온이 세포내로 유입되어 수축운동의 항진이 유발되고, 이어 Na-Ca 교환이 정방향으로 변환되어 calcium이온을 세포밖으로 유출시킴에 따라 수축 운동이 감소된다고 생각한다.

  • PDF

DSP를 이용한 단상 PFC의 설계 (The Design of Single Phase PFC using a DSP)

  • 양오
    • 전자공학회논문지SC
    • /
    • 제44권6호
    • /
    • pp.57-65
    • /
    • 2007
  • 본 논문에서는 DSP(TMS320F2812)를 사용하여 단상 역률개선을 디지털로 설계하였다. 이러한 승압형 역률개선 컨버터를 디지털로 구현하기 위하여 DSP는 컨버터의 입력전압과 인덕터전류, 컨버터의 출력전압이 필요하며 이를 DSP 내부에 있는 12비트 A/D변환기로 구현하였다. 승압을 위한 스위칭소자인 FET가 ON/OFF 될 때 심한 고주파 노이즈와 스위칭 리플이 발생한다. DSP에 의해 구현시 어느 시점에서 A/D 변환을 시작할지 결정하는 것은 대단히 중요하며 스위칭 노이즈가 발생하지 않는 곳에서 A/D 변환을 할 필요가 있다. PWM의 시비율(duty ratio)은 약 5 %에서 95 %까지 가변적이기 때문에 A/D 변환의 고정된 시작점을 찾을 수는 없다. 따라서 본 논문에서는 25 us 마다 PWM의 ON/OFF 폭을 미리 예측한 후 타이머를 이용하여 A/D 변환을 하도록 하였다. 실험 결과들로부터 광범위한 입력전압에 대하여 약 0.99의 역률과 80 Vdc 출력 전압에 대한 리플이 약 5 Vpp임을 확인하였다. 또한 윈도우즈 Xp 환경 하에서 수행되는 응용프로그램을 작성하여 원격에서 단상 PFC 컨버터의 각종 파라미터들과 전압 및 전류 제어기의 이득들을 모니터링하며 원격제어가 가능함을 보여 상용화의 가능성과 유용성을 제시하였다.

Preoperative chemoradiotherapy versus postoperative chemoradiotherapy for stage II-III resectable rectal cancer: a meta-analysis of randomized controlled trials

  • Song, Jin Ho;Jeong, Jae Uk;Lee, Jong Hoon;Kim, Sung Hwan;Cho, Hyeon Min;Um, Jun Won;Jang, Hong Seok;Korean Clinical Practice Guideline for Colon and Rectal Cancer Committee
    • Radiation Oncology Journal
    • /
    • 제35권3호
    • /
    • pp.198-207
    • /
    • 2017
  • Purpose: Whether preoperative chemoradiotherapy (CRT) is better than postoperative CRT in oncologic outcome and toxicity is contentious in prospective randomized clinical trials. We systematically analyze and compare the treatment result, toxicity, and sphincter preservation rate between preoperative CRT and postoperative CRT in stage II-III rectal cancer. Materials and Methods: We searched Medline, Embase, and Cochrane Library from 1990 to 2014 for relevant trials. Only phase III randomized studies performing CRT and curative surgery were selected and the data were extracted. Meta-analysis was used to pool oncologic outcome and toxicity data across studies. Results: Three randomized phase III trials were finally identified. The meta-analysis results showed significantly lower 5-year locoregional recurrence rate in the preoperative-CRT group than in the postoperative-CRT group (hazard ratio, 0.59; 95% confidence interval, 0.41-0.84; p = 0.004). The 5-year distant recurrence rate (p = 0.55), relapse-free survival (p = 0.14), and overall survival (p = 0.22) showed no significant difference between two groups. Acute toxicity was significantly lower in the preoperative-CRT group than in the postoperative-CRT group (p < 0.001). However, there was no significant difference between two groups in perioperative and chronic complications (p = 0.53). The sphincter-saving rate was not significantly different between two groups (p = 0.24). The conversion rate from abdominoperineal resection to low anterior resection in low rectal cancer was significantly higher in the preoperative-CRT group than in the postoperative-CRT group (p < 0.001). Conclusions: As compared to postoperative CRT, preoperative CRT improves only locoregional control, not distant control and survival, with similar chronic toxicity and sphincter preservation rate in rectal cancer patients.

역상 크로마토그래피에서 모멘트 방법과 van Deemter 식을 이용한 고리형 아데노신 일인산의 분리특성 연구 (Analysis of Cyclic Adenosine Monophosphate (cAMP) Separation via RP-HPLC (reversed-phase high-performance liquid chromatography) by the Moment Method and the van Deemter Equation)

  • 이일송;고관영;김인호
    • Korean Chemical Engineering Research
    • /
    • 제53권6호
    • /
    • pp.723-729
    • /
    • 2015
  • 고성능액체크로마토그래피(high-performance liquid chromatography, HPLC)에서 C18(octadecyl silica, ODS) 칼럼에서 고리형 아데노신 일인산(cyclic adenosine monophosphate, cAMP)의 크로마토그램을 얻은 후, 모멘트 분석을 수행하였다. 일반속도 모델(general rate model, GR model)을 기반으로 first absolute moment와 second central moment를 계산하였다. 모멘트 분석의 중요한 세 가지 계수인 분자확산계수(molecular diffusivity, $D_m$), 외부물질전달계수(external mass transfer coefficient, $k_f$), 입자내부확산계수(intra-particle diffusivity, $D_e$)는 각각 Wilke-Chang 식, Wilson-Geankoplis 식을 이용하고 이론단수(theoretical plate number) 식과 van Deemter 식을 비교하여 계산하였다. 실험은 각각 세 가지의 이동상 조성, 용질 농도, 유량 조건에서 수행하였다. Van Deemter 그래프를 그려 모멘트 분석결과를 정성적으로 정리했으며, 이론단 상당높이(height equivalent to a theoretical plate, HETP, $H_{total}$)에 $H_{ax}$, $H_f$, $H_d$가 미치는 영향을 알아보기 위해 van Deemter coefficient를 비교했다. HETP에 가장 큰 영향을 주는 요인은 입자내부확산($H_d$)이었으며 외부물질 전달($H_f$)는 그 영향이 매우 작았다.