• Title/Summary/Keyword: thin-film type

Search Result 1,288, Processing Time 0.032 seconds

Optimization of $p^+$ seeding layer for thin film silicon solar cell by liquid phase epitaxy

  • Lee, Eun-Joo;Lee, Soo-Hong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.6
    • /
    • pp.260-262
    • /
    • 2005
  • Thickness optimization of heavily doped p-type seeding layer was studied to improve performance of thin film silicon solar cell. We used liquid phase epitaxy (LPE) to grow active layer of $25{\mu}m$ thickness on $p^+$ seeding layer. The cells with $p^+$ seeding layer of $10{\mu}m\;to\;50{\mu}m$ thickness were fabricated. The highest efficiency of a cell is 12.95%, with $V_{oc}=633mV,\;J_{sc}=26.5mA/cm^2$, FF = 77.15%. The $p^+$ seeding layer of the cell is $20{\mu}m$ thick. As thicker seeding layer than $20{\mu}m$, the performance of the cell was degraded. The results demonstrate that the part of the recombination current is due to the heavily doped seeding layer. Thickness of heavily doped p-type seeding layer was optimized to $20{\mu}m$. The performance of solar cell is expected to improve with the incorporation of light trapping as texturing and AR coating.

Design of the Platform for a Nanoparticle thin Film Thermoelectric Device transforming Body Heat into Electricity (체온 이용이 가능한 나노입자 박막 열전소자의 플랫폼 개발연구)

  • Yang, Seunggen;Cho, Kyoungah;Choi, Jinyong;Kim, Sangsig
    • Journal of IKEEE
    • /
    • v.20 no.2
    • /
    • pp.174-176
    • /
    • 2016
  • In this study, we maximize the temperature difference between the ends of a HgTe nanoparticle(NP) thin film on a thermoelectric platform with a through-substrate via. The thermoelectric characteristics of the HgTe NP thin film show p-type behavior and its Seebeck coefficient is $290{\mu}V/K$. In addition, we demonstrate the possibility of wearable thermoelectric devices transforming body heat into electricity from through-substrate via thermoelectric platforms on human skin.

OPTIMIZATION OF $P^+$ SEEDING LAYER FOR THIN FILM SILICON SOLAR CELL (결정질 실리콘 박막 태양전지의 $P^+$ 씨앗층 형성 최적화에 관한 연구)

  • Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.168-171
    • /
    • 2005
  • Thickness optimization of heavily doped p-type seeding layer was studied to improve performance of thin film silicon solar cell. We used liquid phase epitaxy (LPE) to grow active layer of $25{\MU}m$ thickness on p+ seeding layer. The cells with p+ seeding layer of $10{\mu}m\;to\;50{\mu}m$ thickness were fabricated. The highest efficiency of a cell is $12.95\%$, with Voc=633mV, $Jsc=26.5mA/cm^2,\;FF=77.15\%$. The $P^+$ seeding layer of the cell is $20{\mu}m$, thick. As thicker seeding layer than $20{\mu}m$, the performance of the cell was degraded. The results demonstrate that the part of the recombination current is due to the heavily doped seeding layer. Thickness of heavily doped p-type seeding layer was optimized to $20{\mu}m$. The performance of solar cell is expected to improve with the incorporation of light trapping as texturing and AR coating.

  • PDF

Fabrication of Organic-Inorganic Nano Hybrid Superlattice Thin Films by Molecular Layer Deposition

  • Cho, Bo-Ram;Yang, Da-Som;Sung, Myung-M.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.115-115
    • /
    • 2011
  • Nano hybrid superlattices consisting of organic and inorganic components have great potential for creation of new types of functional material by utilizing the wide variety of properties which differ from their constituents. They provide the opportunity for developing new materials with new useful properties. Herein, we fabricated new type of organic-inorganic nano hybrid superlattice thin films by a sequential, self-limiting surface chemistry process known as molecular layer depostion (MLD) combined with atomic layer deposition (ALD). An organic layer was formed at $150^{\circ}C$ using MLD with repeated sequintial adsorption of Hydroquinone and Titanium tetrachloride. A $TiO_2$ inorganic nanolayer was deposited at the same temperature using ALD with alternating surface-saturating reactions of Titanium tetrachloride and water. Using UV-Vis spectroscopy, we confirmed visible light absorption by LMCT. And FTIR spectroscopy and XPS were employed to determine the chemical composition. Ellipsometry and TEM analysis were also used to confirm linear growth of the film versus number of MLD cycles at all same temperature. In addition, p-n junction diodes domonstrated in this study suggest that the film can be suitable for n-type semiconductors.

  • PDF

A study on the resist characteristics of plasma polymerized thin film of (MMA-Sty-TMT) (플라즈마중합 (MMA-Sty-TMT) 박막의 레지스트 특성조사)

  • Park, J.K.;Park, S.H.;Park, B.G.;Jung, H.D.;Han, S.O.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1268-1270
    • /
    • 1994
  • Fine lithographic technology in a submicron design regime is necessary for the fabrication of VLSI circuits. In such lithography, fine pattern delineation is performed by electron beam, ion beam and X-ray lithography instead of photolithography. Therefore, the new resist materials and development method have been required. So, we are investigating another positive E-beam resists which have high sensitivity and dry etching resistance, Plasma co-polymerized resist was prepared using an interelectrode gas-flow-type reacter. Methymethacrylate, tetramethyltin and styrene were chosen as the monomer to be used. The delineated pattern in the resist was developed with gas-flow-type reactor using an argon and 02 as etching gas. We studied about the effects of discharge power and mixing rate of the co-polymerized thin :film. The molecular structure of thin film was investigated by ESCA and IR, and then was discussed in relation to its quality as a resist.

  • PDF

A Study on the Characteristics of FTS Type Ion Plating System and Thin film Deposition (FTS형 이온 플레이팅의 특성 및 박막 형성에 관한 연구)

  • Sung, Y.M.;Lee, C.Y.;Shin, J.H.;Kim, G.S.;Cho, J.S.;Park, C.H.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1589-1592
    • /
    • 1994
  • We developed the ion plating system, consisted of the Facing Target Magnetron Sputtering System and the r.f, electrode of the coil type, which was available to control the reactive and the adhesion between thin film and substrate, and studied about the discharge characteristics and the optimum condition in order to form the high quality thin film. The characteristics of discharge and plasma was measured as Double Probe and Electrostatic Retarding Grid Analyzer. The incident ion energy on the substrate was increased as the increasing r.f power, bias voltage. By the r.f electrode, the ionization rate of the sputtered particles was about 75%, and the mean incident ion energy depend on the value which was difference between the plasma potential and biased substrate potential.

  • PDF

Growth and characterites for CdSe single crystal grown by using sublimation method (승화법에 의한 CdSe 성장과 특성)

  • Hong, Kwang-Joon;Baek, Seung-Nam;Hong, Myung-Suk;Kim, Do-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.180-181
    • /
    • 2006
  • CdSe single crystal was grown by sublimation method in the two-step vertical electric furnace. This CdSe single crustal had hexagonal structure whose lattice constants of $a_0$ and $c_0$ were measured $4.299\;{\AA}$ and $7.009\;{\AA}$ by extrapolation method, respectively. CdSe single crystal was n-type semiconductor values were measured from Hall data by Van der Pauw method in the room temperature. Mobility tends to increase in proportion to $T^{3/2}$ from 33K to 130K due to impurity scattering. but mobility tends to decrease in proprtion to $T^{-3/2}$ from 130K to 293K due to lattice scattering. CdSe thin film was made by electron beam evaporation technique had also hexagonal structure. The grain size of this thin film was grown to $1{\mu}m$ as a result of annealing in the vapor of Ar or Cd. Annealde CdSe thin film was n-type semiconductor whose carrier density had about $7{\times}10^{12}cm^{-3}$ and its mobility had about $1.6{\times}10^3cm^2/V$ sec at room temperature.

  • PDF

Power Enhancement of ZnO-Based Piezoelectric Nanogenerators Via Native Defects Control

  • Kim, Dohwan;Kim, Sang-Woo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.297.2-297.2
    • /
    • 2013
  • Scavenging electricity from wasteful energy resources is currently an important issue and piezoelectric nanogenerators (NGs) based on zinc oxide (ZnO) are promising energy harvesters that can be adapted to various portable, wearable, self-powered electronic devices. Although ZnO has several advantages for NGs, the piezoelectric semiconductor material ZnO generate an intrinsic piezoelectric potential of a few volts as a result of its mechanical deformation. As grown, ZnO is usually n-type, a property that was historically ascribed to native defects. Oxygen vacancies (Vo) that work as donors exist in ZnO thin film and usually screen some parts of the piezoelectric potential. Consequently, the ZnO NGs' piezoelectric power cannot reach to its theoretical value, and thus decreasing the effect from Vo is essential. In the present study, c-axis oriented insulator-like sputtered ZnO thin films were grown in various temperatures to fabricate an optimized nanogenerator (NGs). The purity and crystalinity of ZnO were investigated with photoluminescence (PL). Moreover, by introducing a p-type polymer usually used in organic solar cell, it was discussed how piezoelectric passivation effect works in ZnO thin films having different types of defects. Prepared ZnO thin films have both Zn vacancies (accepter like) and oxygen vacancies (donor like). It generates output voltage 20 time lager than n-type dominant semiconducting ZnO thin film without p-type polymer conjugating. The enhancement is due to the internal accepter like point defects, zinc vacancies (VZn). When the more VZn concentration increases, the more chances to prevent piezoelectric potential screening effects are occurred, consequently, the output voltage is enhanced. Moreover, by passivating remained effective oxygen vacancies by p-type polymers, we demonstrated further power enhancement.

  • PDF

P-type Electrical Characteristics of the Amorphous La2NiO4+δ Thin Films

  • Hop, Dang-Hoang;Lee, Jung-A;Heo, Young-Woo;Kim, Jeong-Joo;Lee, Joon-Hyung
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.4
    • /
    • pp.231-236
    • /
    • 2018
  • We report p-type electrical characteristics of the amorphous $La_2NiO_{4+{\delta}}$ thin films which were sputtered on the glass substrates using an RF sputtering system. As-deposited thin films at room temperature and $300^{\circ}C$ were amorphous in nature. Post-annealing of the thin film samples over $400^{\circ}C$ resulted in the nano-crystallization of the $La_2NiO_{4+{\delta}}$. The electrical properties of the films were much dependent on the oxygen partial pressure, temperature of the post-annealing and sputtering ambient. The as-deposited samples at room temperature show a hole concentration of $7.82{\times}10^{13}cm^{-3}$, and it could be increased as high as $3.51{\times}10^{22}cm^{-3}$ when the films were post-annealed in an oxygen atmosphere at $500^{\circ}C$. Such p-type conductivity behavior of the $La_2NiO_{4+{\delta}}$ films suggests that the amorphous and nano-crystallized $La_2NiO_{4+{\delta}}$ films have potential for the application as p-type semiconductive or conductive materials at low temperatures where material diffusion is limited.

Numerical Analysis of Inverted Staggered-Type Hydrogenated Amorphous Silicon Thin Film Transistor (Inverted Staggered-Type 비정질 실리콘 박막트랜지스터의 수치적 분석)

  • Oh, Chang-Ho;Park, Jin-Seok;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.93-96
    • /
    • 1990
  • The characteristics of an inverted staggered-type hydrogenated amorphous silicon thin film transistor has been analyzed by employing numerical simulation. The field effect mobility and threshold voltage are characterized as a function of density of deep and tail states and lattice temperature. It has been found that the density of deep states plays an important role of determining the threshold voltage, while the field effect mobility are very sensitive to the slope of band tail states. Also, the numerically temperature dependence of field effect mobility and threshold voltage has been in good agreements with the experimental results.

  • PDF