• Title/Summary/Keyword: thin film transistor (TFT)

Search Result 502, Processing Time 0.043 seconds

Fabrication of self aligned APCVD A-Si TFT by using ion shower doping method (이온 샤우어 도핑을 이용한 자기정렬방식의 APCVD 비정질 실리콘 박막 트랜지스터의 제작)

  • Moon, Byeong-Yeon;Lee, Kyung-Ha;Jung, You-Chan;Yoo, Jae-Ho;Lee, Seung-Min;Jang, Jin
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.1
    • /
    • pp.146-151
    • /
    • 1995
  • We have studied the fabrication self aligned atmospheric pressure(AP) CVD a-Si thin film transistor with source-drain ohmic contact by using ion shower doping method. The conductivity is 6*10$^{-2}$S/cm when the acceleration voltage, doping time and doping temperature are 6kV, 90s and 350.deg. C, respectively. We obtained the field effect mobility of 1.3cm$^{2}$/Vs and the threshold voltage of 7V.

  • PDF

Laser Microfabrications for Next-Generation Flat Panel Display (레이저를 이용한 차세대 평판 디스플레이 공정)

  • Kim, Kwang-Ryul
    • Korean Journal of Materials Research
    • /
    • v.17 no.7
    • /
    • pp.352-357
    • /
    • 2007
  • Since a pattern defects "repair" system using a diode pumped solid state laser for Flat Panel Display (FPD) was suggested, a lot of laser systems have been explored and developed for mass-production microfabrication process. A maskless lithography system using 405 nm violet laser and Digital Micromirror Device (DMD) has been developed for PDP and Liquid Crystal Display (LCD) Thin Film Transistor (TFT) photolithography process. In addition, a "Laser Direct Patterning" system for Indium Tin Oxide (ITO) for Plasma Display Panel(PDP) has been evaluated one of the best successful examples for laser application system which is applied for mass-production lines. The "heat" and "solvent" free laser microfabrications process will be widely used because the next-generation flat panel displays, Flexible Display and Organic Light Emitting Diode (OLED) should use plastic substrates and organic materials which are very difficult to process using traditional fabrication methods.

A Charge-Pump Passive-Matrix Pixel Driver for Organic Light Emitting Diodes

  • Seo, Jong-Wook;Kim, Han-Byul;Kim, Bong-Ok;Kim, Young-Kwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.108-112
    • /
    • 2002
  • A new pixel driving method for organic light-emitting diode (OLED) flat-panel display (FPD) is proposed. The new charge-pump passive-matrix pixel driver consists only of a storage capacitance and a rectifying diode, and no thin-film transistor (TFT) is needed. The new driver not only supplies a constant current to the OLED throughout the whole period of panel scanning like an active-matrix driver, but also provides a highly linear gray-scale control through a pure digital manner.

  • PDF

The development of high brightness IPS mode for LCD Monitors

  • Kang, In-Byeong;Youn, Won-Gyun;Cho, So-Haeng;Song, In-Duk;Ahn, In-Ho;Chung, In-Jae
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.11-12
    • /
    • 2000
  • An 18.1" Thin Film Transistor Liquid Crystal Display (TFT LCD) monitor adopting high brightness In Plane Switching (IPS) technology was realized. While conventional IPS structure used a Chromium (Cr) and Molybdenum (Mo) for a drain electrode, Indium Tin Oxide (ITO) was proposed and verified in this paper. Black sticky micropeal spacers were introduced for the reduction of light scattering phenomena, which was observed at dark room with the conventional micropeal spacers. With the proposed method, more than 10 % aperture ratio was increased and the excellent image quality was obtained.

  • PDF

Fabrication of 1-${\mu}m$ channel length OTFTs by microcontact printing

  • Shin, Hong-Sik;Baek, Kyu-Ha;Yun, Ho-Jin;Ham, Yong-Hyun;Park, Kun-Sik;Lee, Ga-Won;Lee, Hi-Deok;Wang, Jin-Suk;Lee, Ki-Jun;Do, Lee-Mi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1118-1121
    • /
    • 2009
  • We have fabricated inverted staggered pentacene Thin Film Transistor (TFT) with 1-${\mu}m$ channel length by micro contact printing (${\mu}$-CP) method. Patterning of micro-scale source/drain electrodes without etching was successfully achieved using silver nano particle ink, Polydimethylsiloxane (PDMS) stamp and FC-150 flip chip aligner-bonder. Sheet resistance of the printed Ag nano particle films were effectively reduced by two step annealing at $180^{\circ}C$.

  • PDF

Effects of Electrical Stress on Polysilicon TFTs with Hydrogen Passivation (다결정 실리콘 박막 트랜지스터의 수소화에 따른 전기적 스트레스의 영향)

  • Hwang, Seong-Su;Hwang, Han-Uk;Kim, Yong-Sang
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.5
    • /
    • pp.367-372
    • /
    • 1999
  • We have investigated the effects of electrical stress on poly-Si TFTs with different hydrogen passivation conditions. The amounts of threshod voltage shift of hydrogen passivated poly-Si TFTs are much larger than those of as-fabricated devices both under the gate only and the gate and drain bias stressing. Also, we have quantitatively analyzed the degradation phenomena by analytical method. We have suggested that the electron trapping in the gate dielectric is the dominant degradation mechanism in only gate bias stressed poly-Si TFT while the creation of defects in the channel region and $poly-Si/SiO_2$ interface is prevalent in gate and drain bias stressed device.

  • PDF

The Study of Improvement in the Characteristics of Oxide Thin Film Transistor by using Atmospheric Pressure Plasma (대기압 플라즈마를 이용한 산화물 박막 트랜지스터 표면처리에 관한 연구)

  • Kim, Ga Young;Kim, Kyong Nam;Yeom, Geun Young
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.1
    • /
    • pp.7-10
    • /
    • 2015
  • Recently, oxide TFTs has attracted a lot of interests due to their outstanding properties such as excellent environmental stability, high mobility, wide-band gap energy and high transparency, and investigated through the method using vacuum system and wet solution. In the case of the method using wet solution, process is very simple, however, annealing process should be included. In this study, to overcome the problem of annealing process, atmospheric pressure plasma was used for annealing, and the electrical characteristics such as on/off ration and mobility of device were investigated.

Organic Thin-Film Transistor-driven Current Programming Pixel Circuit for Active-Matrix OLEDs (Organic TFT를 이용한 AM-OLED 구동용 Pixel 보상회로 설계에 관한 연구)

  • Shin, A-Ram;Yoon, Bong-No;Seo, Jun-Ho;Bae, Young-Seok;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.335-336
    • /
    • 2007
  • A new current-programmed pixel circuit for activematrix organic light emitting diodes (AMOLEDs), based on Organic TFTs (OTFTs), is proposed and verified by SPICE simulations. The simulation results show that the proposed pixel circuit, which is a current mirror structure consisting of five Organic TFTs and one capacitor, has reliable linear characteristics between input current and output OLED current. Also, the threshold voltage degradation of Organic TFTs due to long time operation stress is well compensated to reliable values.

  • PDF

Anomalous Stress-Induced Hump Effects in Amorphous Indium Gallium Zinc Oxide TFTs

  • Kim, Yu-Mi;Jeong, Kwang-Seok;Yun, Ho-Jin;Yang, Seung-Dong;Lee, Sang-Youl;Lee, Hi-Deok;Lee, Ga-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.1
    • /
    • pp.47-49
    • /
    • 2012
  • In this paper, we investigated the anomalous hump in the bottom gate staggered a-IGZO TFTs. During the positive bias stress, a positive threshold voltage shift was observed in the transfer curve and an anomalous hump occurred as the stress time increased. The hump became more serious in higher gate bias stress while it was not observed under the negative bias stress. The analysis of constant gate bias stress indicated that the anomalous hump was influenced by the migration of positively charged mobile interstitial zinc ion towards the top side of the a-IGZO channel layer.

Effect of Titanium Addition on Indium Zinc Oxide Thin Film Transistors by RF-magnetron Sputtering (RF-magnetron sputtering을 이용한 TiIZO 기반의 산화물 반도체에 대한 연구)

  • Woo, Sanghyun;Lim, Yooseong;Yi, Moonsuk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.115-121
    • /
    • 2013
  • We fabricated thin film transistors (TFTs) using TiInZnO(TiIZO) thin films as active channel layer. The thin films of TiIZO were deposited at room temperature by RF-magnetron co-sputtering system from InZnO(IZO) and Ti targets. We examined the effects of titanium addition by X-ray diffraction, X-ray photoelectron spectroscopy and the electrical characteristics of the TFTs. The TiIZO TFTs were investigated according to the radio-frequency power applied to the Ti target. We found that the transistor on-off currents were greatly influenced by the composition of titanium addition, which suppressed the formation of oxygen vacancies, because of the stronger oxidation tendency of Ti relative to that of Zn or In. A optimized TiIZO TFT with rf power 40W of Ti target showed good performance with an on/off current ratio greater than $10^5$, a field-effect mobility of 2.09 [$cm^2/V{\cdot}s$], a threshold voltage of 2.2 [V] and a subthreshold swing of 0.492 [V/dec.].