• 제목/요약/키워드: thin and thick beams

검색결과 36건 처리시간 0.021초

비등방성 얇은 곡선보 및 두꺼운 곡선보의 해석연구 (A Study on the Analysis of Anisotropic Curved Thin Beams and Anisotropic Curved Thick Beams)

  • 박원태
    • 한국산학기술학회논문지
    • /
    • 제8권1호
    • /
    • pp.116-120
    • /
    • 2007
  • 본 연구에서는 비등방성 두꺼운 곡선보와 얇은 곡선보의 휨문제에 대한 해석결과를 제시하였다. 비등방성 재료는 재료의 성질이 각 방향으로 다르기 때문에 거동이 복잡하여 해석해를 구하기가 어렵다. 따라서 비등방성 두꺼운 보의 미분방정식의 해를 구하기 위해 본 연구에서는 수치해석법인 유한요소법이 사용되었으며, 비등방성 두꺼운 곡선보와 얇은 곡선보의 휨문제에 대한 해석을 위해 두꺼운 보이론과 얇은 보이론이 사용되며, 비등방성 두꺼운 곡선보와 얇은 곡선보의 휨문제에 대한 해석결과를 비교 검토하였다.

  • PDF

대칭 및 반 대칭으로 적층된 복합재료 채널 빔의 굽힘 거동 (Bending Behaviors of CAS and CUS Thick-walled Composite Channel Beam)

  • 박미정;전흥재;변준형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.167-171
    • /
    • 2005
  • The thick open section composite beams are used extensively as load carrying members and stiffeners of structural elements. However, most of studies on thick composite beams are limited only to closed section beams. In this study, an open cross-section thick-walled composite beam model which includes coupled stiffness, transverse shear, and warping effects is suggested and the deflections associated with the thick-walled composite beams and thin-walled composite beams are obtained and compared with the finite element analysis results. The correlation between thin and thick walled composite beam was achieved for two different layup configurations which are the circumferentially asymmetric stiffness (CAS) and circumferentially uniform stiffness (CUS) beams.

  • PDF

비틀림 하중을 받는 두꺼운 복합재료 빔의 거동 (Behaviors of CAD and CUS Thick-walled Composite I-Beam Under Torsional Load)

  • 박미정;전흥재;변준형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.202-206
    • /
    • 2005
  • Most of studies on the open section composite beams are confined to the thin composite beams. There are some works focused on the thick composite beams but they are limited only to closed section beams. Therefore, it is required to develop an appropriate model to analyze the thick open section composite beams. In this study, the cantilever beams of two specific lay-up configurations are considered which are the circumferentially asymmetric stiffness (CAS) and circumferentially uniform stiffness (CUS) beams. Under the torsional loading, loading induced deformations are obtained for the thick beams using the suggested model. The model includes coupled stiffness and secondary warping effects. The results are compared with those obtained using thin beam model to observe the thickness effects. Those results are also compared with the finite element analysis results.

  • PDF

두꺼운 복합재료 채널빔의 굽힘 및 비틀림 거동 (Bending and Torsional Behaviors of Thick Composite Channel Beam)

  • 박미정;최용진;전흥재;변준형
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.480-485
    • /
    • 2004
  • The applications of composite materials have increased over the past few decades in a variety of structures that require high ratio of stiffness and strength to weight ratios. Recently the thick open section composite beams are used extensively as load carrying members and stiffeners of structural elements. However, most of studies on thick composite beams are limited only to closed section beams. In this study, an open cross-section thick-walled composite beam model which includes coupled stiffness, transverse shear, and warping effects is suggested and the deflections associated with the thick-walled composite beams and thin-walled composite beams are obtained and compared with the finite element analysis results.

  • PDF

굽힘 하중을 받는 두꺼운 채널 빔의 해석 (Analysis of Thick-walled Composite Channel Beam Under Flexural Loading)

  • 최용진;전흥재;변준형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.69-73
    • /
    • 2003
  • A open section thick composite beam model is suggested in this study. In the model, the primary and secondary warping and transverse shear effects are incorporated. The rigidities associated with thick channel composite beam and thin channel composite beam are obtained and compared. The results show that the difference among rigidities of the thick and thin composite beams increase as the wall thickness increases.

  • PDF

Free and forced analysis of perforated beams

  • Abdelrahman, Alaa A.;Eltaher, Mohamed A.;Kabeel, Abdallah M.;Abdraboh, Azza M.;Hendi, Asmaa A.
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.489-502
    • /
    • 2019
  • This article presents a unified mathematical model to investigate free and forced vibration responses of perforated thin and thick beams. Analytical models of the equivalent geometrical and material characteristics for regularly squared perforated beam are developed. Because of the shear deformation regime increasing in perforated structures, the investigation of dynamical behaviors of these structures becomes more complicated and effects of rotary inertia and shear deformation should be considered. So, both Euler-Bernoulli and Timoshenko beam theories are proposed for thin and short (thick) beams, respectively. Mathematical closed forms for the eigenvalues and the corresponding eigenvectors as well as the forced vibration time response are derived. The validity of the developed analytical procedure is verified by comparing the obtained results with both analytical and numerical analyses and good agreement is detected. Numerical studies are presented to illustrate effects of beam slenderness ratio, filling ratio, as well as the number of holes on the dynamic behavior of perforated beams. The obtained results and concluding remarks are helpful in mechanical design and industrial applications of large devices and small systems (MEMS) based on perforated structure.

Stability of perforated nanobeams incorporating surface energy effects

  • Almitani, Khalid H.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제35권4호
    • /
    • pp.555-566
    • /
    • 2020
  • This paper aims to present an analytical methodology to investigate influences of nanoscale and surface energy on buckling stability behavior of perforated nanobeam structural element, for the first time. The surface energy effect is exploited to consider the free energy on the surface of nanobeam by using Gurtin-Murdoch surface elasticity theory. Thin and thick beams are considered by using both classical beam of Euler and first order shear deformation of Timoshenko theories, respectively. Equivalent geometrical constant of regularly squared perforated beam are presented in simplified form. Problem formulation of nanostructure beam including surface energies is derived in detail. Explicit analytical solution for nanoscale beams are developed for both beam theories to evaluate the surface stress effects and size-dependent nanoscale on the critical buckling loads. The closed form solution is confirmed and proven by comparing the obtained results with previous works. Parametric studies are achieved to demonstrate impacts of beam filling ratio, the number of hole rows, surface material characteristics, beam slenderness ratio, boundary conditions as well as loading conditions on the non-classical buckling of perforated nanobeams in incidence of surface effects. It is found that, the surface residual stress has more significant effect on the critical buckling loads with the corresponding effect of the surface elasticity. The proposed model can be used as benchmarks in designing, analysis and manufacturing of perforated nanobeams.

Mixed finite element model for laminated composite beams

  • Desai, Y.M.;Ramtekkar, G.S.
    • Structural Engineering and Mechanics
    • /
    • 제13권3호
    • /
    • pp.261-276
    • /
    • 2002
  • A novel, 6-node, two-dimensional mixed finite element (FE) model has been developed to analyze laminated composite beams by using the minimum potential energy principle. The model has been formulated by considering four degrees of freedom (two displacement components u, w and two transverse stress components ${\sigma}_z$, $\tau_{xz}$) per node. The transverse stress components have been invoked as nodal degrees of freedom by using the fundamental elasticity equations. Thus, the present mixed finite element model not only ensures the continuity of transverse stress and displacement fields through the thickness of the laminated beams but also maintains the fundamental elasticity relationship between the components of stress, strain and displacement fields throughout the elastic continuum. This is an important feature of the present formulation, which has not been observed in various mixed formulations available in the literature. Results obtained from the model have been shown to be in excellent agreement with the elasticity solutions for thin as well as thick laminated composite beams. A few results for a cross-ply beam under fixed support conditions are also presented.

RKPM을 이용한 보의 효과적 해석 방안 (Effective Analysis of Beams Using the RKPM)

  • 송태한;석병호
    • 한국공작기계학회논문집
    • /
    • 제12권5호
    • /
    • pp.73-79
    • /
    • 2003
  • In this paper, RKPM is extended for solving moderately thick and thin beams. General Timoshenko beam theory is used for formulation. Shear locking is the main difficulty in analysis of these kinds of structures. Shear relaxation factor, which is formulated using the difference between bending and shear strain energy, and corrected shear rigidity are introduced to overcome shear locking. Analysis results obtained reveal that RKPM using introduced methods is free of locking and very effectively applicable to deep beams as well as shallow beams.

A refined functional and mixed formulation to static analyses of fgm beams

  • Madenci, Emrah
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.427-437
    • /
    • 2019
  • In this study, an alternative solution procedure presented by using variational methods for analysis of shear deformable functionally graded material (FGM) beams with mixed formulation. By using the advantages of $G{\hat{a}}teaux$ differential approaches, a refined complex general functional and boundary conditions which comprises seven independent variables such as displacement, rotation, bending moment and higher-order bending moment, shear force and higher-order shear force, is derived for general thick-thin FGM beams via shear deformation beam theories. The mixed-finite element method (FEM) is employed to obtain a beam element which have a 2-nodes and total fourteen degrees-of-freedoms. A computer program is written to execute the analyses for the present study. The numerical results of analyses obtained for different boundary conditions are presented and compared with results available in the literature.